Cross-Section Limits for Dark Matter Particles (${{\mathit X}^{0}}$) on Nuclei

For ${\mathit m}_{{{\mathit X}^{0}}}$ = 1 TeV

INSPIRE   JSON  (beta) PDGID:
S030DM3
VALUE (nb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<0.03$ 90 1
UCHIDA
01
 
XMAS ${}^{129}\mathrm {Xe}$, inelastic
$<3$ 90 2
ANGLOHER
00
 
CRES ${}^{}\mathrm {Al}$
3
BENOIT
00
 
EDEL Ge
4
BERNABEI
99D
 
CNTR SIMP
5
DERBIN
99
 
CNTR SIMP
$<0.06$ 95 6
KLIMENKO
99
 
CNTR ${}^{73}\mathrm {Ge}$, inel.
$<0.4$ 95 7
KLIMENKO
99
 
CNTR ${}^{73}\mathrm {Ge}$, inel.
$<40$
ALESSANDRELLO
99
 
CNTR ${}^{}\mathrm {O}$
$<700$
ALESSANDRELLO
99
 
CNTR ${}^{}\mathrm {Te}$
$<0.05$ 90 8
BELLI
99
 
CNTR ${}^{129}\mathrm {Xe}$, inel.
$<1.5$ 90 9
BELLI
99
 
CNTR ${}^{129}\mathrm {Xe}$, inel.
10
BELLI
99C
 
CNTR ${}^{129}\mathrm {Xe}$
$<0.01$ 90 11
BERNABEI
99
 
CNTR ${}^{}\mathrm {Na}$
$<9$ 90 11
BERNABEI
99
 
CNTR ${}^{}\mathrm {I}$
$<7$ 95 12
SARSA
99
 
CNTR ${}^{}\mathrm {Na}$
$<0.3$ 90 13
SMITH
99
 
CNTR ${}^{}\mathrm {Na}$
$<6$ 90 13
SMITH
99
 
CNTR ${}^{}\mathrm {I}$
$<6$ 95 14
GARCIA
99
 
CNTR Natural ${}^{}\mathrm {Ge}$
$<8$ 95
QUENBY
99
 
CNTR ${}^{}\mathrm {Na}$
$<50$ 95
QUENBY
99
 
CNTR ${}^{}\mathrm {I}$
$<700$ 90 15
SNOWDEN-IFFT
99
 
MICA ${}^{16}\mathrm {O}$
$<1 \times 10^{3}$ 90 15
SNOWDEN-IFFT
99
 
MICA ${}^{39}\mathrm {K}$
$<0.8$ 90 16
BECK
99
 
CNTR ${}^{76}\mathrm {Ge}$
$<30$ 90
BACCI
99
 
CNTR ${}^{}\mathrm {Na}$
$<30$ 90
BACCI
99
 
CNTR ${}^{}\mathrm {I}$
$<15$ 90 17
REUSSER
99
 
CNTR Natural ${}^{}\mathrm {Ge}$
$<6$ 95
CALDWELL
98
 
CNTR Natural ${}^{}\mathrm {Ge}$
1  UCHIDA 2014 limit is for inelastic scattering ${{\mathit X}^{0}}$ ${+}$ ${}^{129}\mathrm {Xe}^{*}$ $\rightarrow$ ${{\mathit X}^{0}}{+}$ ${}^{129}\mathrm {Xe}^{*}$ (39.58 keV).
2  ANGLOHER 2002 limit is for spin-dependent WIMP-Aluminum cross section.
3  BENOIT 2000 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay NaI experiments.
4  BERNABEI 1999D search for SIMPs (Strongly Interacting Massive Particles) in the mass range $10^{3} - 10^{16}$ GeV. See their Fig.$~$3 for cross-section limits.
5  DERBIN 1999 search for SIMPs (Strongly Interacting Massive Particles) in the mass range $10^{2} - 10^{14}$ GeV. See their Fig.$~$3 for cross-section limits.
6  KLIMENKO 1998 limit is for inelastic scattering ${{\mathit X}^{0}}$ $~{}^{73}\mathrm {Ge}$ $\rightarrow$ ${{\mathit X}^{0}}{}^{73}\mathrm {Ge}{}^{*}$ ($13.26$ keV).
7  KLIMENKO 1998 limit is for inelastic scattering ${{\mathit X}^{0}}$ $~{}^{73}\mathrm {Ge}$ $\rightarrow$ ${{\mathit X}^{0}}{}^{73}\mathrm {Ge}{}^{*}$ ($66.73$ keV).
8  BELLI 1996 limit for inelastic scattering ${{\mathit X}^{0}}{}^{129}\mathrm {Xe}$ $\rightarrow$ ${{\mathit X}^{0}}{}^{129}\mathrm {Xe}^{*}(39.58$ keV).
9  BELLI 1996 limit for inelastic scattering ${{\mathit X}^{0}}{}^{129}\mathrm {Xe}$ $\rightarrow$ ${{\mathit X}^{0}}{}^{129}\mathrm {Xe}^{*}(236.14$ keV).
10  BELLI 1996C use background subtraction and obtain $\sigma <0.7~$pb ($<0.7~$fb) (90$\%$ CL) for spin-dependent (independent) ${{\mathit X}^{0}}$-proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.
11  BERNABEI 1996 use pulse shape discrimination to enhance the possible signal. The limit here is from R.$~$Bernabei, private communication, September 19, 1997.
12  SARSA 1996 search for annual modulation of WIMP signal. See SARSA 1997 for details of the analysis. The limit here is from M.L.$~$Sarsa, private communication, May 26, 1997.
13  SMITH 1996 use pulse shape discrimination to enhance the possible signal. A dark matter density of $0.4~$GeV$~$cm${}^{-3}$ is assumed.
14  GARCIA 1995 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.
15  SNOWDEN-IFFT 1995 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ${}^{27}\mathrm {Al}$ and ${}^{28}\mathrm {Si}$. See COLLAR 1996 and SNOWDEN-IFFT 1996 for discussion on potential backgrounds.
16  BECK 1994 uses enriched ${}^{76}\mathrm {Ge}$ (86$\%$ purity).
17  REUSSER 1991 limit here is changed from published ($5$) after reanalysis by authors. J.L.$~$Vuilleumier, private communication, March 29, 1996.
References