Spin-Dependent Cross Section Limits for Dark Matter Particle (${{\mathit X}^{0}}$) on Proton

For ${\mathit m}_{{{\mathit X}^{0}}}$ = 100 GeV

INSPIRE   JSON  (beta) PDGID:
S030DP2
For limits from ${{\mathit X}^{0}}$ annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<1.5 \times 10^{-4}$ 90 1
AALBERS
02
 
LZ SD scatter on ${}^{}\mathrm {Xe}$
$<1$ 90 2
ADHIKARI
02C
 
C100 SD WIMP scatter on ${}^{}\mathrm {I}$
$<25.7$ 90 3
SHIMADA
02
 
NAGE directional WIMP search
$<2.5 \times 10^{-5}$ 90 4
ABBASI
02B
 
ICCB IceCube SD limit
$<2 \times 10^{-4}$ 90 5
HUANG
02
 
PNDX SD DM limits
$<50$ 90 6
IKEDA
02
 
NAGE directional gas TPC
$<3.34 \times 10^{-4}$ 90 7
AARTSEN
02C
 
ICCB SD WIMP on ${{\mathit p}}$
$<6.5 \times 10^{-3}$ 8
FELIZARDO
02
 
SMPL WIMPs via SIMPLE
$<4 \times 10^{-5}$ 90 9
AMOLE
01
 
PICO ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$
$<4 \times 10^{-4}$ 90 10
APRILE
01A
 
XE1T ${}^{}\mathrm {Xe}$, SD
$<8 \times 10^{-4}$ 90 11
XIA
01A
 
PNDX SD WIMP on ${}^{}\mathrm {Xe}$
$<8 \times 10^{-4}$ 90 12
AKERIB
01A
 
LUX ${}^{}\mathrm {Xe}$
$<5 \times 10^{-5}$ 90 13
AMOLE
01
 
PICO ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$
$<0.033$ 90 14
APRILE
01A
 
X100 ${}^{}\mathrm {Xe}$ inelastic
$<0.28$ 90 15
BATTAT
01
 
DRFT ${}^{}\mathrm {C}{}^{}\mathrm {S}_{2}$
$<1.5 \times 10^{-3}$ 90 16
FU
01
 
PNDX ${}^{}\mathrm {Xe}$
$\text{< 0.553 - 0.019}$ 95 17
AABOUD
01D
 
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit j}}$ + $\not E_T$
$<1 \times 10^{-5}$ 90 18
AABOUD
01F
 
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \gamma}}$ + $\not E_T$
$<1 \times 10^{-4}$ 90 19
AARTSEN
01C
 
ICCB solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<2 \times 10^{-4}$ 90 20
ADRIAN-MARTIN..
01
 
ANTR solar ${{\mathit \nu}}$ (${{\mathit W}}{{\mathit W}}$, ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit \tau}}{{\overline{\mathit \tau}}}$ )
$<3 \times 10^{-3}$ 90 21
AKERIB
01A
 
LUX ${}^{}\mathrm {Xe}$
$<5 \times 10^{-4}$ 90 22
AMOLE
01
 
PICO CF$_{3}$I
$<1.5 \times 10^{-3}$ 90
AMOLE
01
 
PICO ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$
$<3.19 \times 10^{-3}$ 90
CHOI
01
 
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<2.80 \times 10^{-4}$ 90
CHOI
01
 
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<1.24 \times 10^{-4}$ 90
CHOI
01
 
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<800$ 90 23
NAKAMURA
01
 
NAGE ${}^{}\mathrm {C}{}^{}\mathrm {F}_{4}$
$<1.7 \times 10^{-3}$ 90 24
AVRORIN
01
 
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.045$ 90 24
AVRORIN
01
 
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<7.1 \times 10^{-4}$ 90 24
AVRORIN
01
 
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<6 \times 10^{-3}$ 90
FELIZARDO
01
 
SMPL C$_{2}$ClF$_{5}$
$<2.68 \times 10^{-4}$ 90 25
AARTSEN
01
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.0147$ 90 25
AARTSEN
01
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<8.5 \times 10^{-4}$ 90 26
ADRIAN-MARTIN..
01
 
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.055$ 90 26
ADRIAN-MARTIN..
01
 
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<3.4 \times 10^{-4}$ 90 26
ADRIAN-MARTIN..
01
 
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<0.01$ 90 27
APRILE
01
 
X100 ${}^{}\mathrm {Xe}$
$<7.1 \times 10^{-4}$ 90 28
BOLIEV
01
 
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<8.4 \times 10^{-3}$ 90 28
BOLIEV
01
 
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<3.1 \times 10^{-4}$ 90 28
BOLIEV
01
 
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<7.07 \times 10^{-4}$ 90 29
ABBASI
01
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.0453$ 90 29
ABBASI
01
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<0.07$ 90 30
ARCHAMBAULT
01
 
PICA ${}^{}\mathrm {F}$ (C$_{4}F_{10}$)
$<0.01$ 90
BEHNKE
01
 
COUP CF$_{3}$I
$<1.8$ 90
DAW
01
 
DRFT F (CF$_{4}$)
$<9 \times 10^{-3}$
FELIZARDO
01
 
SMPL C$_{2}$ClF$_{5}$
$<0.02$ 90
KIM
01
 
KIMS CsI
$<2 \times 10^{3}$ 90 23
AHLEN
01
 
DMTP F (CF$_{4}$)
$<0.07$ 90
BEHNKE
01
 
COUP CF$_{3}$I
$<2.7 \times 10^{-4}$ 90 31
TANAKA
01
 
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<4.5 \times 10^{-3}$ 90 31
TANAKA
01
 
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
32
FELIZARDO
01
 
SMPL C$_{2}$ClF$_{3}$
$<6 \times 10^{3}$ 90 23
MIUCHI
01
 
NAGE CF$_{4}$
$<0.4$ 90
ARCHAMBAULT
00
 
PICA ${}^{}\mathrm {F}$
$<0.8$ 90
LEBEDENKO
00A
 
ZEP3 ${}^{}\mathrm {Xe}$
$<1.0$ 90
ANGLE
00A
 
XE10 ${}^{}\mathrm {Xe}$
$<15$ 90
ALNER
00
 
ZEP2 ${}^{}\mathrm {Xe}$
$<0.2$ 90
LEE
00A
 
KIMS CsI
$<1 \times 10^{4}$ 90 23
MIUCHI
00
 
NAGE F (CF$_{4}$)
$<5$ 90 33
AKERIB
00
 
CDMS ${}^{73}\mathrm {Ge}$, ${}^{29}\mathrm {Si}$
$<2$ 90
SHIMIZU
00A
 
CNTR F (CaF$_{2}$)
$<0.3$ 90
ALNER
00
 
NAIA NaI
$<2$ 90
BARNABE-HEIDE..
00
 
PICA F (C$_{4}F_{10}$)
$<100$ 90
BENOIT
00
 
EDEL ${}^{73}\mathrm {Ge}$
$<1.5$ 90
GIRARD
00
 
SMPL F (C$_{2}$ClF$_{5}$)
$<0.7$ 34
GIULIANI
00A
 
RVUE
35
GIULIANI
00
 
RVUE
36
GIULIANI
00A
 
RVUE
$<35$ 90
MIUCHI
00
 
BOLO LiF
$<40$ 90
TAKEDA
00
 
BOLO NaF
1  AALBERS 2023 yield first SD LZ limits on WIMP-${{\mathit p}}$ scatter using ${}^{}\mathrm {Xe}$. ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $1.5 \times 10^{-4}$ pb for m(${{\mathit \chi}}$) = 100 GeV.
2  ADHIKARI 2023C search for SD WIMP scatter on ${}^{}\mathrm {I}$. No signal observed. Require ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ 1 pb for m(${{\mathit \chi}}$) = 100 GeV.
3  SHIMADA 2023 search for WIMPs in NEWAGE directional detector. No signal observed. Limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. mass plane. Quoted limit for m(${{\mathit \chi}}$) = 150 GeV.
4  ABBASI 2022B search for WIMP annihilation to ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit \tau}}{{\overline{\mathit \tau}}}$, ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ in Sun with 7 years data; no signal; limits set in m(${{\mathit \chi}}$) vs. ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) plane for m(${{\mathit \chi}}$): $10 - 100$ GeV; quoted limit for ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ channel.
5  HUANG 2022 search for SD DM scatter on ${}^{}\mathrm {Xe}$; no signal observed; limits placed in ${\mathit \sigma (}{{\mathit \chi}}{{\mathit n}}{)}$ vs. m(DM) plane; quoted limit is for m(DM) = 100 GeV.
6  IKEDA 2021 use direction sensitive TPC NEWAGE to search for SD WIMPs. No signal observed. Limits set in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m plane; ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ 50 pb for m(DM) = 100 GeV.
7  AARTSEN 2020C place combined IceCube and Pico-60 velocity-independent limits on spin-dependent WIMP-${{\mathit p}}$ scatter ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $3.34 \times 10^{-4}$ pb for m(WIMP) = 100 GeV assuming dominant annihilation to ${{\mathit \tau}}{{\overline{\mathit \tau}}}$.
8  FELIZARDO 2020 presents 2014 SIMPLE bounds on WIMP DM using ${}^{}\mathrm {C}_{2}{}^{}\mathrm {Cl}{}^{}\mathrm {F}_{5}$ target.
9  AMOLE 2019 search for SD WIMP scatter on ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $4 \times 10^{-5}$ pb for m(${{\mathit \chi}}$) = 100 GeV.
10  APRILE 2019A search for SD WIMP scatter on 1 t yr ${}^{}\mathrm {Xe}$; no signal, limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m $\sim{}$ $6 - 1000$ GeV.
11  XIA 2019A search for WIMP scatter on ${}^{}\mathrm {Xe}$ in PandaX-II; limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $5 - 1 \times 10^{5}$ GeV.
12  AKERIB 2017A search for SD WIMP scatter on ${}^{}\mathrm {Xe}$ using 129.5 kg yr exposure; limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $6 - 1 \times 10^{5}$ GeV.
13  AMOLE 2017 require ${\mathit \sigma (}WIMP-{{\mathit p}}{)}{}^{SD}$ $<$ $5 \times 10^{-5}$ pb for m(WIMP) = 100 GeV using PICO-60 1167 kg-days exposure at SNOLab.
14  APRILE 2017A require require ${\mathit \sigma (}WIMP-{{\mathit p}}{)}$(inelastic)${}^{SD}$ $<$ $3.3 \times 10^{-2}$ pb for m(WIMP) = 100 GeV, based on 7640 kg day exposure at LNGS.
15  BATTAT 2017 use directional detection of ${}^{}\mathrm {C}{}^{}\mathrm {S}_{2}$ ions to require ${\mathit \sigma (}SD{)}$ $<$ $2.8 \times 10^{-1}$ pb for 100 GeV WIMP with a 55 days exposure at the Boulby Underground Science Facility.
16  FU 2017 from a 33000 kg d exposure at CJPL, PANDAX II derive for m(DM) = 100 GeV, ${{\mathit \sigma}^{SD}}(WIMP-{{\mathit p}}$) $<2 \times 10^{-3}$ pb.
17  AABOUD 2016D use ATLAS 13 TeV 3.2 ${\mathrm {fb}}{}^{-1}$ of data to search for monojet plus missing $\mathit E_{T}$; agree with SM rates; present limits on large extra dimensions, compressed SUSY spectra and wimp pair production.
18  AABOUD 2016F search for monophoton plus missing $\mathit E_{T}$ events at ATLAS with 13 Tev and 3.2 fb${}^{-1}$; signal agrees with SM background; place limits on SD WIMP-proton scattering vs. mediator mass and large extra dimension models.
19  AARTSEN 2016C search for high energy ${{\mathit \nu}}$s from WIMP annihilation in solar core; limits set on SD WIMP-${{\mathit p}}$ scattering (Fig. 8).
20  ADRIAN-MARTINEZ 2016 search for WIMP annihilation into ${{\mathit \nu}}$s from solar core; exclude SD cross section $<$ few $10^{-4}$ depending on $\mathit m$(WIMP).
21  AKERIB 2016A using 2013 data exclude SD WIMP-proton scattering $>$ $3 \times 10^{-3}$ pb for $\mathit m$(WIMP) = 100 GeV.
22  AMOLE 2016 use bubble technique on CF$_{3}$I target to exclude SD WIMP-${{\mathit p}}$ scattering $>$ $5 \times 10^{-4}$ pb for $\mathit m$(WIMP) = 100 GeV.
23  Use a direction-sensitive detector.
24  AVRORIN 2014 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
25  AARTSEN 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between June 2010 and May 2011.
26  ADRIAN-MARTINEZ 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
27  The value has been provided by the authors. APRILE 2013 note that the proton limits on ${}^{}\mathrm {Xe}$ are highly sensitive to the theoretical model used. See also APRILE 2014A.
28  BOLIEV 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 2013 for an older analysis of the same data.
29  ABBASI 2012 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
30  ARCHAMBAULT 2012 search for WIMP scatter on ${}^{}\mathrm {C}_{4}{}^{}\mathrm {F}_{10}$; limits set in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m $\sim{}$ $4 - 500$ GeV.
31  TANAKA 2011 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
32  See their Fig. 3 for limits on spin-dependent proton couplings for ${{\mathit X}^{0}}$ mass of 50 GeV.
33  See also AKERIB 2005.
34  GIULIANI 2005A analyze available data and give combined limits.
35  GIULIANI 2004 reanalyze COLLAR 2000 data and give limits for spin-dependent ${{\mathit X}^{0}}$-proton coupling.
36  GIULIANI 2004A give limits for spin-dependent ${{\mathit X}^{0}}$-proton couplings from existing data.
References