Spin-Dependent Cross Section Limits for Dark Matter Particle (${{\mathit X}^{0}}$) on Proton

For ${\mathit m}_{{{\mathit X}^{0}}}$ = 1 TeV

INSPIRE   PDGID:
S030DP3
For limits from ${{\mathit X}^{0}}$ annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<1.5 \times 10^{-3}$ 90 1
AALBERS
2023
LZ SD scatter on ${}^{}\mathrm {Xe}$
$<0.2$ 90 2
ADHIKARI
2023C
C100 SD WIMP scatter on ${}^{}\mathrm {I}$
$<1.2 \times 10^{-3}$ 90 3
HUANG
2022
PNDX SD DM limits
$<200$ 90 4
IKEDA
2021
NAGE directional gas TPC
$<4.81 \times 10^{-3}$ 90 5
AARTSEN
2020C
ICCB SD WIMP on ${{\mathit p}}$
$<3 \times 10^{-4}$ 90 6
AMOLE
2019
PICO ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$
$<4 \times 10^{-3}$ 90 7
APRILE
2019A
XE1T ${}^{}\mathrm {Xe}$, SD
$<5 \times 10^{-3}$ 90 8
XIA
2019A
PNDX SD WIMP on ${}^{}\mathrm {Xe}$
9
ALBERT
2018C
HAWC DM annihilation in Sun to long-lived mediator
$<2.05 \times 10^{-5}$ 90 10
AARTSEN
2017A
ICCB ${{\mathit \nu}}$, sun
$<7 \times 10^{-3}$ 90 11
AKERIB
2017A
LUX ${}^{}\mathrm {Xe}$
$<0.02$ 90 12
FU
2017
PNDX SD WIMP on ${}^{}\mathrm {Xe}$
13
ADRIAN-MARTIN..
2016B
ANTR solar ${{\mathit \mu}}$ from WIMP annih.
$<0.01$ 90
AMOLE
2015
PICO ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$
$<1.5 \times 10^{3}$ 90
NAKAMURA
2015
NAGE ${}^{}\mathrm {C}{}^{}\mathrm {F}_{4}$
$<2.7 \times 10^{-3}$ 90 14
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.069$ 90 14
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<8.4 \times 10^{-4}$ 90 14
AVRORIN
2014
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<4.48 \times 10^{-4}$ 90 15
AARTSEN
2013
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.01$ 90 15
AARTSEN
2013
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<8.9 \times 10^{-4}$ 90 16
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.02$ 90 16
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<2.3 \times 10^{-4}$ 90 16
ADRIAN-MARTIN..
2013
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<0.0757$ 90 17
APRILE
2013
X100 ${}^{}\mathrm {Xe}$
$<5.4 \times 10^{-3}$ 90 18
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.042$ 90 18
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<1.5 \times 10^{-3}$ 90 18
BOLIEV
2013
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<2.50 \times 10^{-4}$ 90 19
ABBASI
2012
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<7.86 \times 10^{-3}$ 90 19
ABBASI
2012
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<0.08$ 90
BEHNKE
2012
COUP CF$_{3}$I
$<8$ 90
DAW
2012
DRFT F (CF$_{4}$)
$<0.06$
FELIZARDO
2012
SMPL C$_{2}$ClF$_{5}$
$<0.08$ 90
KIM
2012
KIMS CsI
$<8 \times 10^{3}$ 90 20
AHLEN
2011
DMTP F (CF$_{4}$)
$<0.4$ 90
BEHNKE
2011
COUP CF$_{3}$I
$<2 \times 10^{-3}$ 90 21
TANAKA
2011
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<0.02$ 90 21
TANAKA
2011
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<1 \times 10^{-3}$ 90 22
ABBASI
2010
ICCB KK dark matter
$<2 \times 10^{4}$ 90 20
MIUCHI
2010
NAGE CF$_{4}$
$<8.7 \times 10^{-4}$ 90
ABBASI
2009B
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.022$ 90
ABBASI
2009B
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<3$ 90
ARCHAMBAULT
2009
PICA ${}^{}\mathrm {F}$
$<6$ 90
LEBEDENKO
2009A
ZEP3 ${}^{}\mathrm {Xe}$
$<9$ 90
ANGLE
2008A
XE10 ${}^{}\mathrm {Xe}$
$<100$ 90
ALNER
2007
ZEP2 ${}^{}\mathrm {Xe}$
$<0.8$ 90
LEE
2007A
KIMS CsI
$<4 \times 10^{4}$ 90 20
MIUCHI
2007
NAGE F (CF$_{4}$)
$<30$ 90 23
AKERIB
2006
CDMS ${}^{73}\mathrm {Ge}$, ${}^{29}\mathrm {Si}$
$<1.5$ 90
ALNER
2005
NAIA NaI
$<15$ 90
BARNABE-HEIDE..
2005
PICA F (C$_{4}F_{10}$)
$<600$ 90
BENOIT
2005
EDEL ${}^{73}\mathrm {Ge}$
$<10$ 90
GIRARD
2005
SMPL F (C$_{2}$ClF$_{5}$)
$<260$ 90
MIUCHI
2003
BOLO LiF
$<150$ 90
TAKEDA
2003
BOLO NaF
1  AALBERS 2023 yield first SD LZ limits on WIMP-${{\mathit p}}$ scatter using ${}^{}\mathrm {Xe}$. ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $2 \times 10^{-3}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
2  ADHIKARI 2023C search for SD WIMP scatter on ${}^{}\mathrm {I}$. No signal observed. Require ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ 0.2 pb for m(${{\mathit \chi}}$) = 1 TeV.
3  HUANG 2022 search for SD DM scatter on ${}^{}\mathrm {Xe}$; no signal observed; limits placed in ${\mathit \sigma (}{{\mathit \chi}}{{\mathit n}}{)}$ vs. m(DM) plane; quoted limit is for m(DM) = 1 TeV.
4  IKEDA 2021 use direction sensitive TPC NEWAGE to search for SD WIMPs. No signal observed. Limits set in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m plane; ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ 200 pb for m(DM) = 1000 GeV.
5  AARTSEN 2020C place combined IceCube and Pico-60 velocity-independent limits on spin-dependent WIMP-${{\mathit p}}$ scatter ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $3 \times 10^{-3}$ pb for m(WIMP) = 1 TeV assuming dominant annihilation to ${{\mathit W}}{{\mathit W}}$.
6  AMOLE 2019 search for SD WIMP scatter on ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $3 \times 10^{-4}$ pb for m(${{\mathit \chi}}$) = 1000 GeV.
7  APRILE 2019A search for SD WIMP scatter on 1 t yr ${}^{}\mathrm {Xe}$; no signal, limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m $\sim{}$ $6 - 1000$ GeV.
8  XIA 2019A search for WIMP scatter on ${}^{}\mathrm {Xe}$ in PandaX-II; limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $5 - 1 \times 10^{5}$ GeV.
9  ALBERT 2018C search for DM annihilation in Sun to long-lived mediator (LLM) which decays outside Sun, for DM masses above 1 TeV; assuming LLM, limits set on ${{\mathit \sigma}}{}^{SD}({{\mathit \chi}}{{\mathit p}}$).
10  AARTSEN 2017A search for neutrinos from solar WIMP annihilation into ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 532 days of live time.
11  AKERIB 2017A search for SD WIMP scatter on ${}^{}\mathrm {Xe}$ using 129.5 kg yr exposure; limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $6 - 1 \times 10^{5}$ GeV.
12  FU 2017 search for SD WIMP scatter on ${}^{}\mathrm {Xe}$; limits set in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $4 - 1 \times 10^{3}$ GeV.
13  ADRIAN-MARTINEZ 2016B search for secluded DM via WIMP annihilation in solar core into light mediator which later decays to ${{\mathit \mu}}$ or ${{\mathit \nu}}$s; limits presented in Figures 3 and 4.
14  AVRORIN 2014 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
15  AARTSEN 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between June 2010 and May 2011.
16  ADRIAN-MARTINEZ 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
17  The value has been provided by the authors. APRILE 2013 note that the proton limits on ${}^{}\mathrm {Xe}$ are highly sensitive to the theoretical model used. See also APRILE 2014A.
18  BOLIEV 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 2013 for an older analysis of the same data.
19  ABBASI 2012 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
20  Use a direction-sensitive detector.
21  TANAKA 2011 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
22  ABBASI 2010 search for ${{\mathit \nu}_{{{\mu}}}}$ from annihilations of Kaluza-Klein photon dark matter in the Sun.
23  See also AKERIB 2005.
References