Spin-Dependent Cross Section Limits for Dark Matter Particle (${{\mathit X}^{0}}$) on Proton

For ${\mathit m}_{{{\mathit X}^{0}}}$ = 1 TeV

INSPIRE   JSON  (beta) PDGID:
S030DP3
For limits from ${{\mathit X}^{0}}$ annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<1.5 \times 10^{-3}$ 90 1
AALBERS
02
 
LZ SD scatter on ${}^{}\mathrm {Xe}$
$<0.2$ 90 2
ADHIKARI
02C
 
C100 SD WIMP scatter on ${}^{}\mathrm {I}$
$<1.2 \times 10^{-3}$ 90 3
HUANG
02
 
PNDX SD DM limits
$<200$ 90 4
IKEDA
02
 
NAGE directional gas TPC
$<4.81 \times 10^{-3}$ 90 5
AARTSEN
02C
 
ICCB SD WIMP on ${{\mathit p}}$
$<3 \times 10^{-4}$ 90 6
AMOLE
01
 
PICO ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$
$<4 \times 10^{-3}$ 90 7
APRILE
01A
 
XE1T ${}^{}\mathrm {Xe}$, SD
$<5 \times 10^{-3}$ 90 8
XIA
01A
 
PNDX SD WIMP on ${}^{}\mathrm {Xe}$
9
ALBERT
01C
 
HAWC DM annihilation in Sun to long-lived mediator
$<2.05 \times 10^{-5}$ 90 10
AARTSEN
01A
 
ICCB ${{\mathit \nu}}$, sun
$<7 \times 10^{-3}$ 90 11
AKERIB
01A
 
LUX ${}^{}\mathrm {Xe}$
$<0.02$ 90 12
FU
01
 
PNDX SD WIMP on ${}^{}\mathrm {Xe}$
13
ADRIAN-MARTIN..
01B
 
ANTR solar ${{\mathit \mu}}$ from WIMP annih.
$<0.01$ 90
AMOLE
01
 
PICO ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$
$<1.5 \times 10^{3}$ 90
NAKAMURA
01
 
NAGE ${}^{}\mathrm {C}{}^{}\mathrm {F}_{4}$
$<2.7 \times 10^{-3}$ 90 14
AVRORIN
01
 
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.069$ 90 14
AVRORIN
01
 
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<8.4 \times 10^{-4}$ 90 14
AVRORIN
01
 
BAIK ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<4.48 \times 10^{-4}$ 90 15
AARTSEN
01
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.01$ 90 15
AARTSEN
01
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<8.9 \times 10^{-4}$ 90 16
ADRIAN-MARTIN..
01
 
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.02$ 90 16
ADRIAN-MARTIN..
01
 
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<2.3 \times 10^{-4}$ 90 16
ADRIAN-MARTIN..
01
 
ANTR ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<0.0757$ 90 17
APRILE
01
 
X100 ${}^{}\mathrm {Xe}$
$<5.4 \times 10^{-3}$ 90 18
BOLIEV
01
 
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.042$ 90 18
BOLIEV
01
 
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<1.5 \times 10^{-3}$ 90 18
BOLIEV
01
 
BAKS ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$)
$<2.50 \times 10^{-4}$ 90 19
ABBASI
01
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<7.86 \times 10^{-3}$ 90 19
ABBASI
01
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<0.08$ 90
BEHNKE
01
 
COUP CF$_{3}$I
$<8$ 90
DAW
01
 
DRFT F (CF$_{4}$)
$<0.06$
FELIZARDO
01
 
SMPL C$_{2}$ClF$_{5}$
$<0.08$ 90
KIM
01
 
KIMS CsI
$<8 \times 10^{3}$ 90 20
AHLEN
01
 
DMTP F (CF$_{4}$)
$<0.4$ 90
BEHNKE
01
 
COUP CF$_{3}$I
$<2 \times 10^{-3}$ 90 21
TANAKA
01
 
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<0.02$ 90 21
TANAKA
01
 
SKAM ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<1 \times 10^{-3}$ 90 22
ABBASI
01
 
ICCB KK dark matter
$<2 \times 10^{4}$ 90 20
MIUCHI
01
 
NAGE CF$_{4}$
$<8.7 \times 10^{-4}$ 90
ABBASI
00B
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit W}^{+}}{{\mathit W}^{-}}$)
$<0.022$ 90
ABBASI
00B
 
ICCB ${}^{}\mathrm {H}$, solar ${{\mathit \nu}}$ (${{\mathit b}}{{\overline{\mathit b}}}$)
$<3$ 90
ARCHAMBAULT
00
 
PICA ${}^{}\mathrm {F}$
$<6$ 90
LEBEDENKO
00A
 
ZEP3 ${}^{}\mathrm {Xe}$
$<9$ 90
ANGLE
00A
 
XE10 ${}^{}\mathrm {Xe}$
$<100$ 90
ALNER
00
 
ZEP2 ${}^{}\mathrm {Xe}$
$<0.8$ 90
LEE
00A
 
KIMS CsI
$<4 \times 10^{4}$ 90 20
MIUCHI
00
 
NAGE F (CF$_{4}$)
$<30$ 90 23
AKERIB
00
 
CDMS ${}^{73}\mathrm {Ge}$, ${}^{29}\mathrm {Si}$
$<1.5$ 90
ALNER
00
 
NAIA NaI
$<15$ 90
BARNABE-HEIDE..
00
 
PICA F (C$_{4}F_{10}$)
$<600$ 90
BENOIT
00
 
EDEL ${}^{73}\mathrm {Ge}$
$<10$ 90
GIRARD
00
 
SMPL F (C$_{2}$ClF$_{5}$)
$<260$ 90
MIUCHI
00
 
BOLO LiF
$<150$ 90
TAKEDA
00
 
BOLO NaF
1  AALBERS 2023 yield first SD LZ limits on WIMP-${{\mathit p}}$ scatter using ${}^{}\mathrm {Xe}$. ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $2 \times 10^{-3}$ pb for m(${{\mathit \chi}}$) = 1 TeV.
2  ADHIKARI 2023C search for SD WIMP scatter on ${}^{}\mathrm {I}$. No signal observed. Require ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ 0.2 pb for m(${{\mathit \chi}}$) = 1 TeV.
3  HUANG 2022 search for SD DM scatter on ${}^{}\mathrm {Xe}$; no signal observed; limits placed in ${\mathit \sigma (}{{\mathit \chi}}{{\mathit n}}{)}$ vs. m(DM) plane; quoted limit is for m(DM) = 1 TeV.
4  IKEDA 2021 use direction sensitive TPC NEWAGE to search for SD WIMPs. No signal observed. Limits set in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m plane; ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ 200 pb for m(DM) = 1000 GeV.
5  AARTSEN 2020C place combined IceCube and Pico-60 velocity-independent limits on spin-dependent WIMP-${{\mathit p}}$ scatter ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $3 \times 10^{-3}$ pb for m(WIMP) = 1 TeV assuming dominant annihilation to ${{\mathit W}}{{\mathit W}}$.
6  AMOLE 2019 search for SD WIMP scatter on ${}^{}\mathrm {C}_{3}{}^{}\mathrm {F}_{8}$ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) $<$ $3 \times 10^{-4}$ pb for m(${{\mathit \chi}}$) = 1000 GeV.
7  APRILE 2019A search for SD WIMP scatter on 1 t yr ${}^{}\mathrm {Xe}$; no signal, limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m $\sim{}$ $6 - 1000$ GeV.
8  XIA 2019A search for WIMP scatter on ${}^{}\mathrm {Xe}$ in PandaX-II; limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $5 - 1 \times 10^{5}$ GeV.
9  ALBERT 2018C search for DM annihilation in Sun to long-lived mediator (LLM) which decays outside Sun, for DM masses above 1 TeV; assuming LLM, limits set on ${{\mathit \sigma}}{}^{SD}({{\mathit \chi}}{{\mathit p}}$).
10  AARTSEN 2017A search for neutrinos from solar WIMP annihilation into ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 532 days of live time.
11  AKERIB 2017A search for SD WIMP scatter on ${}^{}\mathrm {Xe}$ using 129.5 kg yr exposure; limits placed in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $6 - 1 \times 10^{5}$ GeV.
12  FU 2017 search for SD WIMP scatter on ${}^{}\mathrm {Xe}$; limits set in ${{\mathit \sigma}^{SD}}({{\mathit \chi}}{{\mathit p}}$) vs. m(${{\mathit \chi}}$) plane for m(${{\mathit \chi}}$) $\sim{}$ $4 - 1 \times 10^{3}$ GeV.
13  ADRIAN-MARTINEZ 2016B search for secluded DM via WIMP annihilation in solar core into light mediator which later decays to ${{\mathit \mu}}$ or ${{\mathit \nu}}$s; limits presented in Figures 3 and 4.
14  AVRORIN 2014 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
15  AARTSEN 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between June 2010 and May 2011.
16  ADRIAN-MARTINEZ 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
17  The value has been provided by the authors. APRILE 2013 note that the proton limits on ${}^{}\mathrm {Xe}$ are highly sensitive to the theoretical model used. See also APRILE 2014A.
18  BOLIEV 2013 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 2013 for an older analysis of the same data.
19  ABBASI 2012 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
20  Use a direction-sensitive detector.
21  TANAKA 2011 search for neutrinos from the Sun arising from the pair annihilation of ${{\mathit X}^{0}}$ trapped by the Sun. The amount of ${{\mathit X}^{0}}$ depends on the ${{\mathit X}^{0}}$-proton cross section.
22  ABBASI 2010 search for ${{\mathit \nu}_{{{\mu}}}}$ from annihilations of Kaluza-Klein photon dark matter in the Sun.
23  See also AKERIB 2005.
References