$\mathit CP$ VIOLATING ASYMMETRIES OF $\mathit P$-ODD ($\mathit T$-ODD) MOMENTS

$\mathit A_{Tviol}({{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{\pm}}$) in ${{\mathit D}^{\pm}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{\pm}}$

INSPIRE   JSON  (beta) PDGID:
S031TV1
C$_{T}{}\equiv$ $\vec {{\mathit p}}_{{{\mathit K}^{+}}}\cdot{}$ ($\vec {{\mathit p}}_{{{\mathit \pi}^{+}}}{\times }\vec {{\mathit p}}_{{{\mathit K}^{-}}}$) is a parity-odd correlation of the ${{\mathit K}^{+}}$, ${{\mathit \pi}^{+}}$, and ${{\mathit K}^{-}}$ momenta for the ${{\mathit D}^{+}}$. $\bar C_{T}{}\equiv\vec {{\mathit p}}_{{{\mathit K}^{-}}}\cdot{}$ ($\vec {{\mathit p}}_{{{\mathit \pi}^{-}}}{\times }\vec {{\mathit p}}_{{{\mathit K}^{+}}}$) is the corresponding quantity for the ${{\mathit D}^{-}}$. Then A$_{T}{}\equiv$ [$\Gamma (C_{T}>0)−\Gamma (C_{T}<$ 0)] $/$ [$\Gamma (C_{T}>$ 0)$+$ $\Gamma (C_{T}<$ 0)], and $\bar A_{T}{}\equiv$ [$\Gamma (−\bar C_{T}>0)−\Gamma (−\bar C_{T}<$ 0)] $/$ [$\Gamma (−\bar C_{T}>$ 0)$+$ $\Gamma (−\bar C_{T}<$ 0)], and A$_{Tviol}{}\equiv$ (A$_{T}−$ $\bar A_{T}$). C$_{T}$ and $\bar C_{T}$ are commonly referred to as $\mathit T$-odd moments, because they are odd under $\mathit T$ reversal. However, the $\mathit T$-conjugate process ${{\mathit K}^{+}}$ ${{\mathit K}^{-}}$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{\pm}}$ $\rightarrow$ ${{\mathit D}^{\pm}}$ is not accessible, while the $\mathit P$-conjugate process is.
VALUE (%) EVTS DOCUMENT ID TECN  COMMENT
$-3.34$ $\pm2.66$ $\pm0.35$ 1.4k
MOON
2023
BELL 980 fb${}^{-1}$ at $\sim{}{{\mathit \Upsilon}{(4S)}}$
References