$\bf{
1776.86 \pm0.12}$
|
OUR AVERAGE
|
$1776.91$ $\pm0.12$ ${}^{+0.10}_{-0.13}$ |
1171 |
1 |
|
BES3 |
$1776.68$ $\pm0.12$ $\pm0.41$ |
682k |
2 |
|
BABR |
$1776.81$ ${}^{+0.25}_{-0.23}$ $\pm0.15$ |
81 |
|
|
KEDR |
$1776.61$ $\pm0.13$ $\pm0.35$ |
|
2 |
|
BELL |
$1775.1$ $\pm1.6$ $\pm1.0$ |
13.3k |
3 |
|
OPAL |
$1778.2$ $\pm0.8$ $\pm1.2$ |
|
|
|
CLEO |
$1776.96$ ${}^{+0.18}_{-0.21}$ ${}^{+0.25}_{-0.17}$ |
65 |
4 |
|
BES |
$1776.3$ $\pm2.4$ $\pm1.4$ |
11k |
5 |
|
ARG |
$1783$ ${}^{+3}_{-4}$ |
692 |
6 |
|
DLCO |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$1777.8$ $\pm0.7$ $\pm1.7$ |
35k |
7 |
|
CLEO |
$1776.9$ ${}^{+0.4}_{-0.5}$ $\pm0.2$ |
14 |
8 |
|
BES |
1
ABLIKIM 2014D fit ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{)}$ at different energies near threshold.
|
2
AUBERT 2009AK and BELOUS 2007 fit $\tau $ pseudomass spectrum in ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{\tau}}}$ decays. Result assumes ${\mathit m}_{{{\mathit \nu}_{{\tau}}}}$ = 0.
|
3
ABBIENDI 2000A fit ${{\mathit \tau}}$ pseudomass spectrum in ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \pi}^{\pm}}{}\leq{}2{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ and ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \pi}^{\pm}}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{}\leq{}1{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ decays. Result assumes ${\mathit m}_{{{\mathit \nu}_{{\tau}}}}$=0.
|
4
BAI 1996 fit $\sigma\mathrm {( {{\mathit e}^{+}} {{\mathit e}^{-}} \rightarrow {{\mathit \tau}^{+}} {{\mathit \tau}^{-}} )}$ at different energies near threshold.
|
5
ALBRECHT 1992M fit ${{\mathit \tau}}$ pseudomass spectrum in ${{\mathit \tau}^{-}}$ $\rightarrow$ 2 ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \nu}_{{\tau}}}$ decays. Result assumes ${\mathit m}_{{{\mathit \nu}_{{\tau}}}}$=0.
|
6
BACINO 1978B value comes from ${{\mathit e}^{\pm}}{{\mathit X}^{\mp}}$ threshold. Published mass 1782 MeV increased by 1 MeV using the high precision ${{\mathit \psi}{(2S)}}$ mass measurement of ZHOLENTZ 1980 to eliminate the absolute SPEAR energy calibration uncertainty.
|
7
BALEST 1993 fit spectra of minimum kinematically allowed ${{\mathit \tau}}$ mass in events of the type ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ $\rightarrow$ (${{\mathit \pi}^{+}}{{\mathit n}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ )(${{\mathit \pi}^{-}}{{\mathit m}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{\tau}}}$ ) $\mathit n{}\leq{}$2, $\mathit m{}\leq{}$2, 1${}\leq{}\mathit n+\mathit m{}\leq{}$3. If ${\mathit m}_{{{\mathit \nu}_{{\tau}}}}{}\not=$0, result increases by (${{\mathit m}^{2}}_{{{\mathit \nu}_{{\tau}}}}$/1100 MeV).
|
8
BAI 1992 fit $\sigma\mathrm {( {{\mathit e}^{+}} {{\mathit e}^{-}} \rightarrow {{\mathit \tau}^{+}} {{\mathit \tau}^{-}} )}$ near threshold using ${{\mathit e}}{{\mathit \mu}}$ events.
|