${{\mathit \tau}}$ WEAK ANOMALOUS MAGNETIC DIPOLE MOMENT ($\alpha {}^{\mathit w}_{{{\mathit \tau}}}$)

Electroweak radiative corrections are expected to contribute at the $10^{-6}$ level. See BERNABEU 1995.
The $\mathit q{}^{2}$ dependence is expected to be small providing no thresholds are nearby.

Re($\alpha {}^{\mathit w}_{{{\mathit \tau}}}$)

INSPIRE   JSON  (beta) PDGID:
S035WMM
VALUE CL% DOCUMENT ID TECN  COMMENT
$\bf{<1.1 \times 10^{-3}}$ 95 1
HEISTER
2003F
ALEP $1990 - 1995$ LEP runs
• • We do not use the following data for averages, fits, limits, etc. • •
$\text{>-0.0024 and <0.0025}$ 95 2
GONZALEZ-SPRI..
2000
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ and ${{\mathit W}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{{\tau}}}}$
$<4.5 \times 10^{-3}$ 90 1
ACCIARRI
1998C
L3 1991--1995 LEP runs
1  Limit is on the absolute value of the real part of the weak anomalous magnetic dipole moment.
2  GONZALEZ-SPRINBERG 2000 use data on tau lepton production at LEP1, SLC, and LEP2, and data from colliders and LEP2 to determine limits. Assume imaginary component is zero.
References