${{\mathit \tau}}$-DECAY PARAMETERS

$\xi ({{\mathit \rho}}$) PARAMETER

INSPIRE   JSON  (beta) PDGID:
S035XRH
($\mathit V−\mathit A$) theory predicts $\xi ({{\mathit \rho}}$) = $1$.
VALUE EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 0.994 \pm0.008}$ OUR FIT
$\bf{ 0.994 \pm0.009}$ OUR AVERAGE
$0.987$ $\pm0.012$ $\pm0.011$ 59k
HEISTER
2001E
ALEP 1991--1995 LEP runs
$0.99$ $\pm0.12$ $\pm0.04$
ABE
1997O
SLD 1993--1995 SLC runs
$0.995$ $\pm0.010$ $\pm0.003$ 66k
ALEXANDER
1997F
CLEO ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $10.6$ GeV
$1.022$ $\pm0.028$ $\pm0.030$ 1.7k 1
ALBRECHT
1994E
ARG ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $9.4 - 10.6$ GeV
• • We do not use the following data for averages, fits, limits, etc. • •
$1.045$ $\pm0.058$ $\pm0.032$
BUSKULIC
1995D
ALEP Repl. by HEISTER 2001E
$1.03$ $\pm0.11$ $\pm0.05$ 2
BUSKULIC
1994D
ALEP 1990+1991 LEP run
1  ALBRECHT 1994E measure the square of this quantity and use the sign determined by ALBRECHT 1990I to obtain the quoted result.
2  Superseded by BUSKULIC 1995D.
References