$\mathit CP$ VIOLATION

$\mathit A_{CP}$ is defined as
$\mathit A_{CP}$ = ${B({{\mathit \Lambda}_{{{b}}}^{0}} \rightarrow {{\mathit f}}) – B({{\overline{\mathit \Lambda}}_{{{b}}}^{0}} \rightarrow {{\overline{\mathit f}}})\over B({{\mathit \Lambda}_{{{b}}}^{0}} \rightarrow {{\mathit f}}) + B({{\overline{\mathit \Lambda}}_{{{b}}}^{0}} \rightarrow {{\overline{\mathit f}}})}$,
the $\mathit CP$-violation asymmetry of exclusive ${{\mathit \Lambda}_{{{b}}}^{0}}$ and ${{\overline{\mathit \Lambda}}_{{{b}}}^{0}}$ decay.

$\mathit A_{CP}({{\mathit \Lambda}_{{{b}}}}$ $\rightarrow$ ${{\mathit D}}{{\mathit p}}{{\mathit K}^{-}}$)

INSPIRE   JSON  (beta) PDGID:
S040A38
VALUE DOCUMENT ID TECN  COMMENT
$0.12$ $\pm0.09$ ${}^{+0.02}_{-0.03}$ 1
AAIJ
2021AD
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
1  $\mathit A_{CP}$ is measured from (B(${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ [ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\mathit p}}{{\mathit K}^{-}}$) $−$ B(${{\overline{\mathit \Lambda}}_{{{b}}}^{0}}$ $\rightarrow$ [ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ]$_{D}$ ${{\overline{\mathit p}}}{{\mathit K}^{+}}$))/ (B(${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ [ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\mathit p}}{{\mathit K}^{-}}$) + B(${{\overline{\mathit \Lambda}}_{{{b}}}^{0}}$ $\rightarrow$ [ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ]$_{D}$ ${{\overline{\mathit p}}}{{\mathit K}^{+}}$)) in the full phase space.
Conservation Laws:
$\mathit CP$ INVARIANCE
References