$\mathit CP$ VIOLATION

$\mathit A_{CP}$ is defined as
$\mathit A_{CP}$ = ${B({{\mathit \Lambda}_{{{b}}}^{0}} \rightarrow {{\mathit f}}) – B({{\overline{\mathit \Lambda}}_{{{b}}}^{0}} \rightarrow {{\overline{\mathit f}}})\over B({{\mathit \Lambda}_{{{b}}}^{0}} \rightarrow {{\mathit f}}) + B({{\overline{\mathit \Lambda}}_{{{b}}}^{0}} \rightarrow {{\overline{\mathit f}}})}$,
the $\mathit CP$-violation asymmetry of exclusive ${{\mathit \Lambda}_{{{b}}}^{0}}$ and ${{\overline{\mathit \Lambda}}_{{{b}}}^{0}}$ decay.

$\mathit A_{CP}({{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{-}}$)

INSPIRE   JSON  (beta) PDGID:
S040A43
VALUE DOCUMENT ID TECN  COMMENT
$-0.032$ $\pm0.029$ $\pm0.006$ 1
AAIJ
2024AH
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
1  Analyzes the angular distribution of ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{-}}$.
References