${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ MIXING PARAMETERS

For a discussion of ${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ mixing see the note on “${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ Mixing” in the ${{\mathit B}^{0}}$ Particle Listings above.
${{\mathit \chi}_{{{d}}}}$ is a measure of the time-integrated ${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ mixing probability that a produced ${{\mathit B}^{0}}({{\overline{\mathit B}}^{0}}$) decays as a ${{\overline{\mathit B}}^{0}}({{\mathit B}^{0}}$). Mixing violates $\Delta \mathit B{}\not=$2 rule.
${{\mathit \chi}_{{{d}}}}$ = ${\mathit x{}^{2}_{\mathit d}\over 2(1+\mathit x{}^{2}_{\mathit d})}$

$\mathit x_{\mathit d}$ = ${\Delta {\mathit m}_{{{\mathit B}^{0}}}\over \Gamma _{{{\mathit B}^{0}}}}$ = (${\mathit m}_{{{\mathit B}_{{{H}}}^{0}}}$ $-$ ${\mathit m}_{{{\mathit B}_{{{L}}}^{0}}}){\mathit \tau}_{{{\mathit B}^{0}}}$ ,
where $\mathit H$, $\mathit L$ stand for heavy and light states of two ${{\mathit B}^{0}}$ $\mathit CP$ eigenstates and ${\mathit \tau}_{{{\mathit B}^{0}}}$ = ${1\over 0.5 (\Gamma _{{{\mathit B}_{{{H}}}^{0}}}+\Gamma _{{{\mathit B}_{{{L}}}^{0}}})}$.

Re$(\lambda _{CP}$ $/$ $\vert \lambda _{CP}\vert )$ Re(z)

INSPIRE   JSON  (beta) PDGID:
S042RZ1
The $\lambda _{CP}$ characterizes ${{\mathit B}^{0}}$ and ${{\overline{\mathit B}}^{0}}$ decays to states of charmonium plus ${{\mathit K}_L^0}$ . Parameter z is used to describe $\mathit CPT$ violation in mixing, see the review on “$\mathit CP$ Violation” in the reviews section.

VALUE DOCUMENT ID TECN  COMMENT
$0.047$ $\pm0.022$ $\pm0.003$ 1
LEES
2016E
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$0.014$ $\pm0.035$ $\pm0.034$ 2
AUBERT,B
2004C
BABR Repl. by LEES 2016E
1  The first uncertainty is the uncertainty from Re(z) and the second uncertainty is from Re($\lambda /\vert \lambda \vert $).
2  Corresponds to 90$\%$ confidence range $\lbrack{}−$0.072, 0.101].
References