$\mathit CP$ VIOLATION PARAMETERS IN ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit K}^{*0}}$ DECAY

The parameters ${{\mathit r}}_{{{\mathit B}^{0}}}$ and ${{\mathit \delta}}_{{{\mathit B}^{0}}}$ are the magnitude ratio and strong phase difference between the amplitudes of A(${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit K}^{*0}}$) and A(${{\mathit B}^{0}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{*0}}$). The measured observables and are defined as ${{\mathit x}}_{\pm{}}$ = ${{\mathit r}}_{{{\mathit B}^{0}}}$ cos(${{\mathit \delta}}_{{{\mathit B}^{0}}}$ $\pm{}{{\mathit \gamma}}$) and ${{\mathit y}}_{\pm{}}$ = ${{\mathit r}}_{{{\mathit B}^{0}}}$ sin(${{\mathit \delta}}_{{{\mathit B}^{0}}}$ $\pm{}{{\mathit \gamma}}$) where ${{\mathit \gamma}}$ is the CKM angle ${{\mathit \gamma}}$.
"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). The CKM angle $\gamma $ is listed in the ${{\mathit B}^{+}}$ section for "$\mathit CP$ VIOLATION PARAMETERS IN ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{+}}$ AND SIMILAR DECAYS."

$\mathit y_{+}({{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{*0}}$)

INSPIRE   JSON  (beta) PDGID:
S042YP
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ -0.35 \pm0.10}$ OUR AVERAGE
$-0.336$ $\pm0.105$ $\pm0.019$ 1
AAIJ
2024U
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
$-0.47$ $\pm0.28$ $\pm0.22$ 2
AAIJ
2016S
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8 TeV
• • We do not use the following data for averages, fits, limits, etc. • •
$-0.65$ ${}^{+0.24}_{-0.23}$ $\pm0.08$ 3
AAIJ
2016AA
LHCB Repl. by AAIJ 2016Z
$-0.81$ $\pm0.28$ $\pm0.06$ 4
AAIJ
2016Z
LHCB Repl. by AAIJ 2024U
1  Uses Dalitz plot analysis of ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ decays coming from ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{*}{(892)}^{0}}$ modes. The second error is the systematic contribution from the ${{\mathit D}}$ decay strong-phase inputs and from the experimental systematic uncertainties.
2  Uses Dalitz plof of ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ with ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$, ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, or ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$.
3  Uses Dalitz plot analysis of ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ decays coming from ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{*}{(892)}^{0}}$ modes.
4  Uses Dalitz plot analysis of ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ decays coming from ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{*}{(892)}^{0}}$ modes.
Conservation Laws:
$\mathit CP$ INVARIANCE
References