• • • We do not use the following data for averages, fits, limits, etc. • • • |
|
1 |
|
CMS |
|
2 |
|
CMS |
|
3 |
|
CMS |
|
4 |
|
CMS |
|
5 |
|
ATLS |
|
6 |
|
ATLS |
|
7 |
|
ATLS |
|
8 |
|
ATLS |
|
9 |
|
ATLS |
|
10 |
|
CMS |
|
11 |
|
CMS |
|
12 |
|
CMS |
|
13 |
|
CMS |
|
14 |
|
ATLS |
|
15 |
|
ATLS |
|
16 |
|
CMS |
|
17 |
|
ATLS |
|
18 |
|
CMS |
|
19 |
|
ATLS |
|
20 |
|
CMS |
|
21 |
|
D0 |
|
22 |
|
CMS |
|
23 |
|
OPAL |
|
24 |
|
OPAL |
|
25 |
|
ALEP |
|
26 |
|
DLPH |
|
27 |
|
L3 |
1
SIRUNYAN 2019BM search for the final state ${{\mathit W}^{+}}{{\mathit W}^{-}}{{\mathit W}^{\pm}}$ using ${{\mathit W}}$ decays to electrons or muons. Two event samples are considered, events with three leptons, or events with two oppositely charged leptons accompanied by two jets. In a kinematic region selected to enhance the effect of anomalous couplings, no events are selected in the data, and 95$\%$ C.L. upper limits are obtained as follows: $-1.2$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ $1.2$, $-3.3$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<$ $3.3$, $-2.7$ $<$ f$_{T,2}/\Lambda {}^{4}$ $<$ $2.6$, in units of TeV$^{-4}$ and without application of a form factor.
|
2
SIRUNYAN 2019BP study ${{\mathit W}}{{\mathit Z}}$ plus 2 jets production, using ${{\mathit W}}$ and ${{\mathit Z}}$ decay channels with electrons or muons. In the data, 75 events are selected, with a fitted SM signal of $15.1$ $\pm1.6$ events and a fitted background of $62.4$ $\pm2.8$ events. The transverse mass distribution of the ${{\mathit W}}{{\mathit Z}}$ system is analyzed to set the following limits at 95$\%$ C.L., in units of TeV${}^{-4}$: $-9.15$ $<$ f$_{M,0}/\Lambda {}^{4}$ $<$ 9.15, $-9.15$ $<$ f$_{M,1}/\Lambda {}^{4}$ $<$ 9.45, $-26.5$ $<$ f$_{S,0}/\Lambda {}^{4}$ $<$ 27.5, $-41.2$ $<$ f$_{S,1}/\Lambda {}^{4}$ $<$ 42.8, $-0.75$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ 0.81, $-0.49$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<$ 0.55, $-1.49$ $<$ f$_{T,2}/\Lambda {}^{4}$ $<$ 1.85.
|
3
SIRUNYAN 2019CQ search for anomalous electroweak production of vector boson pairs in association with two jets. Events are selected by requiring two jets with a large invariant mass and rapidity separation, one or two leptons (electrons or muons), and a ${{\mathit W}}$ or ${{\mathit Z}}$ boson decaying hadronically. In the ${{\mathit W}}{{\mathit V}}$ ( ${{\mathit Z}}{{\mathit V}}$ ) channel, 347 (47) events are selected in the data, with a total expected background of $352$ $\pm19$ ($50.3$ $\pm5.8$) events. Analysing the mass distribution of the ${{\mathit W}}{{\mathit V}}$ or ${{\mathit Z}}{{\mathit V}}$ system, the following 95$\%$ C.L. limits are obtained: $-2.7<$ f$_{S,0}/\Lambda {}^{4}$ $<$ 2.7, $-3.4$ $<$ f$_{S,1}/\Lambda {}^{4}$ $<$ 3.4, $-0.69$ $<$ f$_{M,0}/\Lambda {}^{4}$ $<$ 0.70, $-2.0$ $<$ f$_{M,1}/\Lambda {}^{4}$ $<$ 2.1, $-1.3$ $<$ f$_{M,6}/\Lambda {}^{4}$ $<$ 1.3, $-3.4$ $<$ f$_{M,7}/\Lambda {}^{4}$ $<$ 3.4, $-0.12$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ 0.11, $-0.12$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<$ 0.13, $-0.28$ $<$ f$_{T,2}/\Lambda {}^{4}$ $<$ 0.28, in units of TeV${}^{-4}$.
|
4
SIRUNYAN 2018CC study ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV leading to a pair of same-sign ${{\mathit W}}$ pairs decaying leptonically (${{\mathit e}}$ or ${{\mathit \mu}}$) associated with a pair of jets. Isolated leptons with $p_T$ $>$ 25 (20) GeV for the leading (trailing) lepton, with $\vert {{\mathit \eta}}\vert $ $<$ 2.5 (2.4) for ${{\mathit e}}$ (${{\mathit \mu}}$) and jets with $p_T$ $>$ 30 GeV, $\vert {{\mathit \eta}}\vert $ $<$ 5.0, $\vert \Delta {{\mathit \eta}_{{jj}}}\vert $ $>$ 2.5 and ${{\mathit m}_{{jj}}}$ $>$ 500 GeV is required. Further cuts are applied to minimize ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}}{{\mathit e}}$ events, non-prompt leptons and hadronically decaying taus. The number of selected events is 201, with an expected SM signal of $66.9$ $\pm2.4$ and background of $138$ $\pm13$ events. Analysing the dilepton invariant mass spectrum the following 95$\%$ C.L. limits are derived: $-7.7<$ f$_{S,0}/\Lambda {}^{4}$ $<$ $7.7$, $-21.6$ $<$ f$_{S,1}/\Lambda {}^{4}$ $<21.8$, $-6.0$ $<$ f$_{M,0}/\Lambda {}^{4}$ $<$ $5.9$, $-8.7$ $<$ f$_{M,1}/\Lambda {}^{4}$ $<$ $9.1$, $-11.9$ $<$ f$_{M,6}/\Lambda {}^{4}$ $<$ $11.8$, $-13.3$ $<$ f$_{M,7}/\Lambda {}^{4}$ $<$ $12.9$, $-0.62$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ $0.65$, $-0.28$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<0.31$, $-0.89$ $<$ f$_{T,2}/\Lambda {}^{4}$ $<1.02$.
|
5
AABOUD 2017AA analyze ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$ production in association with two jets and ${{\mathit W}}$ decay modes with electrons or muons. In the kinematic region of VBS the effect of anomalous QGCs is enhanced by requiring the transverse mass of the ${{\mathit W}}{{\mathit W}}$ system to be larger than 400 GeV. In the data, 8 events are selected with a total background expected from SM processes of $3.8$ $\pm0.6$ events. Assuming the other QGC coupling to have the SM value of zero, the observed event yield is used to determine 95$\%$ CL limits on the QGCs: $-0.14<{{\mathit \alpha}_{{4}}}<$ 0.15 and $-0.22<{{\mathit \alpha}_{{5}}}<$ 0.22. Supersedes AAD 2014AM.
|
6
AABOUD 2017AG determine the ${{\mathit W}}{{\mathit W}}{{\mathit \gamma}}$ and ${{\mathit W}}{{\mathit Z}}{{\mathit \gamma}}$ cross sections in 8 TeV ${{\mathit p}}{{\mathit p}}$ interactions by studying the final states ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}{{\mathit \gamma}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}{{\mathit \gamma}}$ or ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}{{\mathit \gamma}}$ . Upper limits on the production cross sections are derived in a fiducial region optimized for BSM physics. These are used to derive the following 95$\%$ C.L. upper limits for quartic couplings assuming the form scale factor, $\Lambda _{FF}$ = $\infty{}$ (all in units of $10^{3}$ TeV${}^{-4}$): $-0.3$ $<$ f$_{M,0}/\Lambda {}^{4}$ $<$ 0.3, $-0.5$ $<$ f$_{M,1}/\Lambda {}^{4}$ $<$ 0.5, $-1.8$ $<$ f$_{M,2}/\Lambda {}^{4}$ $<$ 1.8, $-1.1$ $<$ f$_{M,4}/\Lambda {}^{4}$ $<$ 1.1, $-1.7$ $<$ f$_{M,5}/\Lambda {}^{4}$ $<$ 1.7, $-0.6$ $<$ f$_{M,6}/\Lambda {}^{4}$ $<$ 0.6, $-1.1$ $<$ f$_{M,7}/\Lambda {}^{4}$ $<$ 1.1, $-0.1$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ 0.1, $-0.2$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<$ 0.2, $-0.4$ $<$ f$_{T,4}/\Lambda {}^{4}$ $<$ 0.4, $-1.5$ $<$ f$_{T,5}/\Lambda {}^{4}$ $<$ 1.6, $-1.9$ $<$ f$_{T,6}/\Lambda {}^{4}$ $<$ 1.9, $-4.3$ $<$ f$_{T,7}/\Lambda {}^{4}$ $<$ 4.3.
|
7
AABOUD 2017D analyze electroweak diboson ( ${{\mathit W}}{{\mathit V}}$ , ${{\mathit V}}$ = ${{\mathit W}}$, ${{\mathit Z}}$) production in association with a high-mass dijet system. In the data, 32 events are selected with an expected total background of $32$ $\pm12$ events. Analysing the transverse mass distribution of the ${{\mathit W}}{{\mathit V}}$ system, the following limits are set at 95$\%$ C.L.: $-0.024$ $<$ ${{\mathit \alpha}_{{4}}}$ $<$ 0.030 and $-0.028$ $<$ ${{\mathit \alpha}_{{5}}}$ $<$ 0.033.
|
8
AABOUD 2017J analyze the ${{\mathit Z}}{{\mathit \gamma}}$ production in association with a high-mass dijet system, with the ${{\mathit Z}}$ boson decaying into a pair of electrons, muons, or neutrinos. In the charged lepton (neutrino) channel, events are selected with a dijet mass larger than 500 (600) GeV and a transverse photon energy larger than 250 (150) GeV, with 2 (4) events selected in the data and $0.30$ $\pm0.08$ ($1.6$ $\pm0.5$) expected background events. The observed event yield is used to determine 95$\%$ CL limits as follows: $-4.1 \times 10^{3}$ $<$ f$_{T,9}/\Lambda {}^{4}$ $<$ $4.2 \times 10^{3}$, $-1.9 \times 10^{3}$ $<$ f$_{T,8}/\Lambda {}^{4}$ $<$ $2.1 \times 10^{3}$, $-19$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ $16$, $-160$ $<$ f$_{M,0}/\Lambda {}^{4}$ $<$ $180$, $-350$ $<$ f$_{M,1}/\Lambda {}^{4}$ $<$ $340$, $-890$ $<$ f$_{M,2}/\Lambda {}^{4}$ $<$ $890$, $-1.7 \times 10^{3}$ $<$ f$_{M,3}/\Lambda {}^{4}$ $<$ $1.7 \times 10^{3}$, in units of TeV${}^{-4}$ and without application of a form factor.
|
9
AABOUD 2017M analyze tri-boson ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}{{\mathit W}^{\mp}}$ production in decay channels with three charged leptons or two like-sign charged leptons with two jets, where the lepton can be an electron or muon. In the data, 24 tri-lepton events and 21 di-lepton plus jets events are selected, compared to a total event yield expected in the SM of $30.8$ $\pm3.0$ and $21.9$ $\pm2.0$, respectively. Analysing the tri-lepton transverse mass or the transverse momentum sum of the two leptons, two jets and the missing transverse energy, the following limits at 95$\%$ CL are derived for the form factor cut-off scale $\Lambda _{FF}\rightarrow\infty{}$: $-0.13$ $<$ f$_{S,0}/\Lambda {}^{4}$ $<$ $0.18$, $-0.21$ $<$ f$_{S,1}/\Lambda {}^{4}$ $<$ $0.27$, in units of $10^{4}$ TeV${}^{-4}$, which are converted into the following limits: $-0.49$ $<$ ${{\mathit \alpha}_{{4}}}$ $<$ $0.75$ and $-0.48$ $<$ ${{\mathit \alpha}_{{5}}}$ $<$ $0.62$.
|
10
KHACHATRYAN 2017AA analyse electroweak production of ${{\mathit Z}}{{\mathit \gamma}}$ in association with two hadronic jets, with the ${{\mathit Z}}$ boson decaying to electron or muon pairs. Events with photon transverse momentum larger than 60 GeV and di-jet invariant mass larger than 400 GeV are selected. The ${{\mathit Z}}{{\mathit \gamma}}$ inavariant mass spectrum is analysed to set 95$\%$ C.L. limits as follows: $-71$ $<$ f$_{M,0}/\Lambda {}^{4}$ $<$ $75$, $-190$ $<$ f$_{M,1}/\Lambda {}^{4}$ $<$ $182$, $-32$ $<$ f$_{M,2}/\Lambda {}^{4}$ $<$ $31$, $-58$ $<$ f$_{M,3}/\Lambda {}^{4}$ $<$ $59$, $-3.8$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ $3.4$, $-4.4$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<$ $4.4$, $-9.9$ $<$ f$_{T,2}/\Lambda {}^{4}$ $<$ $9.0$, $-1.8$ $<$ f$_{T,8}/\Lambda {}^{4}$ $<$ $1.8$, $-4.0$ $<$ f$_{T,9}/\Lambda {}^{4}$ $<$ $4.0$, in units of TeV${}^{-4}$ and without application of a form factor.
|
11
KHACHATRYAN 2017M analyse electroweak production of ${{\mathit W}}{{\mathit \gamma}}$ in association with two hadronic jets, with the ${{\mathit W}}$ boson decaying to electrons or muons. Events with photon transverse momentum larger than 200 GeV and di-jet invariant mass larger than 200 GeV are selected. The ${{\mathit W}}$ transverse momentum spectrum is analysed to set 95$\%$ C.L. limits as follows: $-77$ $<$ f$_{M,0}/\Lambda {}^{4}$ $<$ $74$, $-125$ $<$ f$_{M,1}/\Lambda {}^{4}$ $<$ $129$, $-26$ $<$ f$_{M,2}/\Lambda {}^{4}$ $<$ $26$, $-43$ $<$ f$_{M,3}/\Lambda {}^{4}$ $<$ $44$, $-40$ $<$ f$_{M,4}/\Lambda {}^{4}$ $<$ $40$, $-65$ $<$ f$_{M,5}/\Lambda {}^{4}$ $<$ $65$, $-129$ $<$ f$_{M,6}/\Lambda {}^{4}$ $<$ $129$, $-164$ $<$ f$_{M,7}/\Lambda {}^{4}$ $<$ $162$, $-5.4$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ $5.6$, $-3.7$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<$ $4.0$, $-11$ $<$ f$_{T,2}/\Lambda {}^{4}$ $<$ $12$, $-3.8$ $<$ f$_{T,5}/\Lambda {}^{4}$ $<$ $3.8$, $-2.8$ $<$ f$_{T,6}/\Lambda {}^{4}$ $<$ $3.0$, $-7.3$ $<$ f$_{T,7}/\Lambda {}^{4}$ $<$ $7.7$, in units of TeV${}^{-4}$ and without application of a form factor.
|
12
SIRUNYAN 2017AD study ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to determine the cross section of ${{\mathit Z}}{{\mathit Z}}{{\mathit j}}{{\mathit j}}$ with the ${{\mathit Z}}$ decaying to ${{\mathit e}}{{\mathit e}}$ or ${{\mathit \mu}}{{\mathit \mu}}$ . The ${{\mathit Z}}{{\mathit Z}}$ mass distribution is used to set upper limits on the anomalous quartic couplings. The 95$\%$ upper limits for the relevant quartic couplings in units of TeV${}^{-4}$ are: $-0.46$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ 0.44, $-0.61$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<$ 0.61, $-1.2$ $<$ f$_{T,2}/\Lambda {}^{4}$ $<$ 1.2, $-0.84$ $<$ f$_{T,8}/\Lambda {}^{4}$ $<$ 0.84, $-1.8$ $<$ f$_{T,9}/\Lambda {}^{4}$ $<$ 1.8.
|
13
SIRUNYAN 2017AR study ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to determine the cross section of ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit W}}{{\mathit \gamma}}{{\mathit \gamma}}$ and ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}{{\mathit \gamma}}$ where ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ , ${{\mathit \ell}}$ being an electron or a muon. The number of ${{\mathit W}}$ events in the ${{\mathit e}}$ and ${{\mathit \mu}}$ channels is 63 and 108 respectively, and the number of ${{\mathit Z}}$ events in the ${{\mathit e}}$ and ${{\mathit \mu}}$ channels is 117 and 141. To increase sensitivity, the transverse momentum of the leading photon is required to be larger than 70 GeV. The 95$\%$ C.L. upper limits in units of TeV${}^{-4}$ are $-701$ $<$ f$_{M,2}/\Lambda {}^{4}$ $<$ 683, $-1170$ $<$ f$_{M,3}/\Lambda {}^{4}$ $<$ 1220, $-33.5$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ 34.0, $-44.3$ $<$ f$_{T,1}/\Lambda {}^{4}$ $<$ 44.8, $-93.8$ $<$ f$_{T,2}/\Lambda {}^{4}$ $<$ 93.2.
|
14
AABOUD 2016E study ${{\mathit W}}{{\mathit W}}$ production in two-photon mediated ${{\mathit p}}{{\mathit p}}$ collisions at 8 TeV where the ${{\mathit W}}$ boson decays into an electron or muon, probing the ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit W}}{{\mathit W}}$ vertex for anomalous quartic gauge couplings. The lepton $p_T$ is required to be larger than 30 GeV. Limits on anomalous couplings are determined from events with $p_T$ larger than 120 GeV where the aQGC effect is enhanced and the SM background reduced; in the data corresponding to an integrated luminosity of 20.2${\mathrm {fb}}{}^{-1}$, 1 event is selected with an expected SM background of $0.37$ $\pm0.13$ events. The 95$\%$ C.L. limits without a form-factor cutoff ($\Lambda _{{\mathrm {cutoff}}}\rightarrow\infty{}$) are as follows: $-1.7$ $<$ ${{\mathit a}^{W}_{{0}}}/\Lambda {}^{2}$ $<$ 1.7 and $-6.4$ $<$ ${{\mathit a}^{W}_{{C}}}/\Lambda {}^{2}$ $<$ 6.3 in units of $10^{-6}$ GeV${}^{-2}$. In terms of another set of variables: $-6.6$ $<$ f$_{M,0}/\Lambda {}^{4}$ $<$ 6.6 and $-24$ $<$ f$_{M,1}/\Lambda {}^{4}$ $<$ 25 in units of $10^{-11}$ GeV${}^{-4}$.
|
15
AAD 2016Q study ${{\mathit Z}}{{\mathit \gamma}}{{\mathit \gamma}}$ production in ${{\mathit p}}{{\mathit p}}$ collisions. In events with no additional jets, 29 (22) ${{\mathit Z}}$ decays to electron (muon) pairs are selected, with an expected background of $3.3$ $\pm1.1$ ($6.5$ $\pm2.0$) events, as well as 19 ${{\mathit Z}}$ decays to netrino pairs with an expected background of $8.3$ $\pm4.4$ events. Analysing the photon transverse momentum distribution for ${\mathit m}_{\mathrm { {{\mathit \gamma}} {{\mathit \gamma}} }}$ above 200 GeV (300 GeV) for lepton (neutrino) events, yields the 95$\%$ C.L. limits: $-1.6 \times 10^{4}$ $<$ f$_{M,2}/\Lambda {}^{4}$ $<$ $1.6 \times 10^{4}$, $-2.9 \times 10^{4}$ $<$ f$_{M,3}/\Lambda {}^{4}$ $<$ $2.7 \times 10^{4}$, $-86$ $<$ f$_{T,0}/\Lambda {}^{4}$ $<$ $103$, $-0.69 \times 10^{3}$ $<$ f$_{T,5}/\Lambda {}^{4}$ $<$ $0.68 \times 10^{3}$, $-0.74 \times 10^{4}$ $<$ f$_{T,9}/\Lambda {}^{4}$ $<$ $0.74 \times 10^{4}$ in units of TeV${}^{-4}$ and without application of a form factor $\Lambda _{{\mathrm {FF}}}$.
|
16
KHACHATRYAN 2016AX searches for anomalous ${{\mathit W}}{{\mathit W}}{{\mathit \gamma}}{{\mathit \gamma}}$ quartic gauge couplings in the two-photon-mediated process ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}}{{\mathit p}}{{\mathit W}}{{\mathit W}}$ , assuming the ${{\mathit W}}{{\mathit W}}{{\mathit \gamma}}$ triple gauge boson couplings to be at their Standard Model values. 13 events containing an ${{\mathit e}^{\pm}}$ ${{\mathit \mu}^{\mp}}$ pair with $p_T({{\mathit e}}$, ${{\mathit \mu}}$) $>$ 30 GeV are selected in a total luminosity of 19.7 ${\mathrm {fb}}{}^{-1}$, with an expected ${{\mathit \gamma}}$ ${{\mathit \gamma}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ signal of $5.3$ $\pm0.1$ events and an expected background of $3.9$ $\pm0.5$ events. When combining with the data collected at 7 TeV (CHATRCHYAN 2013AA), and not assuming a form factor, the following 1-parameter limits at 95$\%$ C.L. are obtained from the $p_T({{\mathit e}}$, ${{\mathit \mu}}$) spectrum: $\vert {{\mathit a}^{W}_{{0}}}/\Lambda {}^{2}\vert $ $<$ $1.1 \times 10^{-6}$ GeV${}^{-2}$ (${{\mathit a}^{W}_{{C}}}$ = 0), and $\vert {{\mathit a}^{W}_{{C}}}/\Lambda {}^{2}\vert $ $<$ $4.1 \times 10^{-6}$ GeV${}^{-2}$ (${{\mathit a}^{W}_{{0}}}$ = 0). In terms of another set of variables: $\vert $f$_{M,0}/\Lambda {}^{4}\vert $ $<$ $4.2 \times 10^{-12}$ GeV${}^{-4}$, $\vert $f$_{M,1}/\Lambda {}^{4}\vert $ $<$ $16 \times 10^{-12}$ GeV${}^{-4}$, $\vert $f$_{M,2}/\Lambda {}^{4}\vert $ $<$ $2.1 \times 10^{-12}$ GeV${}^{-4}$, $\vert $f$_{M,3}/\Lambda {}^{4}\vert $ $<$ $7.8 \times 10^{-12}$ GeV${}^{-4}$.
|
17
AAD 2015N study ${{\mathit W}}{{\mathit \gamma}}{{\mathit \gamma}}$ events in 8 TeV ${{\mathit p}}{{\mathit p}}$ interactions, where the ${{\mathit W}}$ decays into an electron or a muon. The events are characterized by an isolated lepton, a missing transverse energy due to the decay neutrino, and two isolated photons, with the $p_T$ of the lepton and the photons being $>$ 20 GeV. The number of candidate events observed in the electron channel for N(jet) ${}\geq{}$ 0 and N(jet) = 0 is 47 and 15, the corresponding numbers for the muon channel being 110 and 53. The backgrounds expected are $30.2$ $\pm7.4$, $8.7$ $\pm3.0$, $52.1$ $\pm12.2$, and $24.4$ $\pm8.3$ respectively. The 95$\%$ C.L. limits on the values of the parameters ${{\mathit f}}_{T,0}/{{\mathit \Lambda}^{4}}$, ${{\mathit f}}_{M,2}/{{\mathit \Lambda}^{4}}$ and ${{\mathit f}}_{M,3}/{{\mathit \Lambda}^{4}}$ are $-0.9 - 0.9$, $-0.8 - 0.8$, and $-1.5 - 1.4$ respectively, without application of a form factor $\Lambda _{{\mathrm {FF}}}$.
|
18
KHACHATRYAN 2015D study vector-boson-scattering tagged by two jets, requiring two same-sign charged leptons arising from ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$ production and decay. The two jets must have a transverse momentum larger than 30 GeV, while the leptons, electrons or muons, must have a transverse momentum $>$ 20 GeV. The dijet mass is required to be $>$ 500 GeV, the dilepton mass $>$ 50 GeV, with additional requirement of differing from the ${{\mathit Z}}$ mass by $>$ 15 GeV. In the two categories ${{\mathit W}^{+}}{{\mathit W}^{+}}$ and ${{\mathit W}^{-}}{{\mathit W}^{-}}$ , 10 and 2 data events are observed in a data sample corresponding to an integrated luminosity of 19.4 fb${}^{-1}$, with an expected background of $3.1$ $\pm0.6$ and $2.6$ $\pm0.5$ events. Analysing the distribution of the dilepton invariant mass, the following limits at 95$\%$ C.L. are obtained, in units of TeV${}^{-4}$: $-38$ $<$ F$_{S,0}/\Lambda {}^{4}$ $<$ 40, $-118$ $<$ F$_{S,1}/\Lambda {}^{4}$ $<$ 120, $-33$ $<$ F$_{M,0}/\Lambda {}^{4}$ $<$ 32, $-44$ $<$ F$_{M,1}/\Lambda {}^{4}$ $<$ 47, $-65$ $<$ F$_{M,6}/\Lambda {}^{4}$ $<$ 63, $-70$ $<$ F$_{M,7}/\Lambda {}^{4}$ $<$ 66, $-4.2$ $<$ F$_{T,0}/\Lambda {}^{4}$ $<$ 4.6, $-1.9$ $<$ F$_{T,1}/\Lambda {}^{4}$ $<$ 2.2, $-5.2$ $<$ F$_{T,2}/\Lambda {}^{4}$ $<$ 6.4.
|
19
AAD 2014AM analyze electroweak production of ${{\mathit W}}{{\mathit W}}$ jet jet same-charge diboson plus two jets production, with the ${{\mathit W}}$ bosons decaying to electron or muon, to study the quartic ${{\mathit W}}{{\mathit W}}{{\mathit W}}{{\mathit W}}$ coupling. In a kinematic region enhancing the electroweak production over the strong production, 34 events are observed in the data while $29.8$ $\pm2.4$ events are expected with a backgound of $15.9$ $\pm1.9$ events. Assuming the other QGC coupling to have the SM value of zero, the observed event yield is used to determine 95$\%$ CL limits on the quartic gauge couplings: $-0.14<{{\mathit \alpha}_{{4}}}<$ 0.16 and $-0.23<{{\mathit \alpha}_{{5}}}<$ 0.24.
|
20
CHATRCHYAN 2014Q study ${{\mathit W}}{{\mathit V}}{{\mathit \gamma}}$ production in 8 TeV ${{\mathit p}}{{\mathit p}}$ collisions, in the single lepton final state, with ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ , ${{\mathit Z}}$ $\rightarrow$ dijet or ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ , ${{\mathit W}}$ $\rightarrow$ dijet, the dijet mass resolution precluding differentiation between the ${{\mathit W}}$ and ${{\mathit Z}}$. $p_T$ and pseudo-rapidity cuts are put on the lepton, the photon and the two jets to minimize backgrounds. The dijet mass is required to be between $70 - 100$ GeV and $\vert {{\mathit \Delta}}{{\mathit \eta}_{{jj}}}\vert $ $<$ 1.4. The selected number of muon (electron) events are 183 (139), with SM expectation being $194.2$ $\pm11.5$ ($147.9$ $\pm10.7$) including signal and background. The photon $\mathit E_{T}$ distribution is used to set limits on the anomalous quartic couplings. The following 95$\%$ CL limits are deduced (all in units of TeV${}^{-2}$ or TeV${}^{-4}$): $-21$ $<{{\mathit a}_{{0}}^{W}}/{{\mathit \Lambda}^{2}}<$ 20, $-34$ $<{{\mathit a}_{{c}}^{W}}/{{\mathit \Lambda}^{2}}<$ 32, $-12$ $<{{\mathit \kappa}_{{0}}^{W}}/{{\mathit \Lambda}^{2}}<$ 10 and $-18$ $<{{\mathit \kappa}_{{c}}^{W}}/{{\mathit \Lambda}^{2}}<$ 17; and $-25$ $<{{\mathit f}}_{T,0}/{{\mathit \Lambda}^{4}}<$ 24 TeV${}^{-4}$.
|
21
ABAZOV 2013D searches for anomalous ${{\mathit W}}{{\mathit W}}{{\mathit \gamma}}{{\mathit \gamma}}$ quartic gauge couplings in the two-photon-mediated process ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}}{{\mathit p}}{{\mathit W}}{{\mathit W}}$ , assuming the ${{\mathit W}}{{\mathit W}}{{\mathit \gamma}}$ triple gauge boson couplings to be at their Standard Model values. 946 events containing an ${{\mathit e}^{+}}{{\mathit e}^{-}}$ pair with missing energy are selected in a total luminosity of 9.7 fb${}^{-1}$, with an expectation of $983$ $\pm108$ events from Standard-Model processes. The following 1-parameter limits at 95$\%$ CL are otained: $\vert {{\mathit a}_{{0}}^{W}}/\Lambda {}^{2}\vert $ $<$ $4.3 \times 10^{-4}$ GeV${}^{-2}$ (${{\mathit a}_{{c}}^{W}}$ = 0), $\vert {{\mathit a}_{{c}}^{W}}/\Lambda {}^{2}\vert $ $<$ $1.5 \times 10^{-3}$ GeV${}^{-2}$ (${{\mathit a}_{{0}}^{W}}$ = 0).
|
22
CHATRCHYAN 2013AA searches for anomalous ${{\mathit W}}{{\mathit W}}{{\mathit \gamma}}{{\mathit \gamma}}$ quartic gauge couplings in the two-photon-mediated process ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit p}}{{\mathit p}}{{\mathit W}}{{\mathit W}}$ , assuming the ${{\mathit W}}{{\mathit W}}{{\mathit \gamma}}$ triple gauge boson couplings to be at their Standard Model values. 2 events containing an ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}$ pair with $p_T({{\mathit e}}$, ${{\mathit \mu}}$) $>$ 30 GeV are selected in a total luminosity of 5.05 fb${}^{-1}$, with an expected ${{\mathit p}}{{\mathit p}}{{\mathit W}}{{\mathit W}}$ signal of $2.2$ $\pm0.4$ events and an expected background of $0.84$ $\pm0.15$ events. The following 1-parameter limits at 95$\%$ CL are otained from the $p_T({{\mathit e}}$, ${{\mathit \mu}}$) spectrum: $\vert {{\mathit a}_{{0}}^{W}}/\Lambda {}^{2}\vert $ $<$ $4.0 \times 10^{-6}$ GeV${}^{-2}$ (${{\mathit a}_{{c}}^{W}}$ = 0), $\vert {{\mathit a}_{{c}}^{W}}/\Lambda {}^{2}\vert $ $<$ $1.5 \times 10^{-5}$ GeV${}^{-2}$ (${{\mathit a}_{{0}}^{W}}$ = 0).
|
23
ABBIENDI 2004B select 187 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}{{\mathit \gamma}}$ events in the C.M. energy range $180 - 209$ GeV, where $\mathit E_{{{\mathit \gamma}}}>$2.5 GeV, the photon has a polar angle $\vert $cos $\theta _{\gamma }$ $\vert <$ 0.975 and is well isolated from the nearest jet and charged lepton, and the effective masses of both fermion-antifermion systems agree with the ${{\mathit W}}$ mass within 3 $\Gamma _{{{\mathit W}}}$. The measured differential cross section as a function of the photon energy and photon polar angle is used to extract the 95$\%$ CL limits: $-0.020$ GeV${}^{-2}<\mathit a_{0}/\Lambda {}^{2}<0.020$ GeV${}^{-2}$, $-0.053$~GeV${}^{-2}<\mathit a_{c}/\Lambda {}^{2}<0.037$ GeV${}^{-2}$ and $-0.16$ GeV${}^{-2}<\mathit a_{n}/\Lambda {}^{2}<0.15$ GeV${}^{-2}$.
|
24
ABBIENDI 2004L select 20 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit \gamma}}{{\mathit \gamma}}$ acoplanar events in the energy range $180 - 209$ GeV and 176 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \gamma}}{{\mathit \gamma}}$ events in the energy range $130 - 209$ GeV. These samples are used to constrain possible anomalous ${{\mathit W}^{+}}{{\mathit W}^{-}}{{\mathit \gamma}}{{\mathit \gamma}}$ and ${{\mathit Z}}{{\mathit Z}}$ ${{\mathit \gamma}}$ ${{\mathit \gamma}}$ quartic couplings. Further combining with the ${{\mathit W}^{+}}{{\mathit W}^{-}}{{\mathit \gamma}}$ sample of ABBIENDI 2004B the following one--parameter 95$\%$ CL limits are obtained: $-0.007$ $<{{\mathit a}_{{0}}^{Z}}/\Lambda {}^{2}<$ 0.023 GeV${}^{-2}$, $-0.029$ $<{{\mathit a}_{{c}}^{Z}}/\Lambda {}^{2}<$ 0.029 GeV${}^{-2}$, $-0.020$ $<{{\mathit a}_{{0}}^{W}}/\Lambda {}^{2}<$ 0.020 GeV${}^{-2}$, $-0.052$ $<{{\mathit a}_{{c}}^{W}}/\Lambda {}^{2}<$ 0.037 GeV${}^{-2}$.
|
25
In the CM energy range 183 to 209 GeV HEISTER 2004A select 30 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit \gamma}}{{\mathit \gamma}}$ events with two acoplanar, high energy and high transverse momentum photons. The photon$-$photon acoplanarity is required to be $>$ 5$^\circ{}$, $\mathit E_{{{\mathit \gamma}}}/\sqrt {s }$ $>$ 0.025 (the more energetic photon having energy $>$ 0.2 $\sqrt {s }$), p$_{T_{\gamma }}/E_{{\mathrm {beam}}}$ $>$ 0.05 and $\vert $cos $ \theta _{\gamma }\vert $ $<$ 0.94. A likelihood fit to the photon energy and recoil missing mass yields the following one--parameter 95$\%$ CL limits: $-0.012$ $<$ ${{\mathit a}_{{0}}^{Z}}/\Lambda {}^{2}$ $<$ 0.019 GeV${}^{-2}$, $-0.041$ $<$ ${{\mathit a}_{{c}}^{Z}}/\Lambda {}^{2}$ $<$ 0.044 GeV${}^{-2}$, $-0.060$ $<$ ${{\mathit a}_{{0}}^{W}}/\Lambda {}^{2}$ $<$ 0.055 GeV${}^{-2}$, $-0.099$ $<$ ${{\mathit a}_{{c}}^{W}}/\Lambda {}^{2}$ $<$ 0.093 GeV${}^{-2}$.
|
26
ABDALLAH 2003I select 122 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}{{\mathit \gamma}}$ events in the C.M. energy range $189 - 209$ GeV, where $\mathit E_{{{\mathit \gamma}}}>$5 GeV, the photon has a polar angle $\vert $cos $\theta _{{{\mathit \gamma}}}\vert <0.95$ and is well isolated from the nearest charged fermion. A fit to the photon energy spectra yields $\mathit a_{\mathit c}/\Lambda {}^{2}$= $0.000$ ${}^{+0.019}_{-0.040}$ GeV${}^{-2}$, $\mathit a_{0}/\Lambda {}^{2}$= $-0.004$ ${}^{+0.018}_{-0.010}$ GeV${}^{-2}$, ${{\widetilde{\mathit a}}}_{0}/\Lambda {}^{2}$= $-0.007$ ${}^{+0.019}_{-0.008}$ GeV${}^{-2}$, $\mathit a_{\mathit n}/\Lambda {}^{2}$= $-0.09$ ${}^{+0.16}_{-0.05}$ GeV${}^{-2}$, and ${{\widetilde{\mathit a}}}_{\mathit n}/\Lambda {}^{2}$= $+0.05$ ${}^{+0.07}_{-0.15}$ GeV${}^{-2}$, keeping the other parameters fixed to their Standard Model values$~$(0). The 95$\%$ CL limits are: $-0.063$ GeV${}^{-2}<\mathit a_{\mathit c}/\Lambda {}^{2}<+0.032$ GeV${}^{-2}$, $-0.020$ GeV${}^{-2}<\mathit a_{0}/\Lambda {}^{2}<+0.020$ GeV${}^{-2}$, $-0.020$ GeV${}^{-2}<{{\widetilde{\mathit a}}}_{0}/\Lambda {}^{2}<+0.020$ GeV${}^{-2}$, $-0.18$ GeV${}^{-2}<\mathit a_{\mathit n}/\Lambda {}^{2}<+0.14$ GeV${}^{-2}$, $-0.16$ GeV${}^{-2}<{{\widetilde{\mathit a}}}_{\mathit n}/\Lambda {}^{2}<+0.17$ GeV${}^{-2}$.
|
27
ACHARD 2002F select 86 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}{{\mathit \gamma}}$ events at $192 - 207$ GeV, where $\mathit E_{{{\mathit \gamma}}}>$5 GeV and the photon is well isolated. They also select 43 acoplanar ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit \gamma}}{{\mathit \gamma}}$ events in this energy range, where the photon energies are $>5~$GeV and $>1~$GeV and the photon polar angles are between 14$^\circ{}$ and 166$^\circ{}$. All these 43 events are in the recoil mass region corresponding to the ${{\mathit Z}}$ ($75 - 110$ GeV). Using the shape and normalization of the photon spectra in the ${{\mathit W}^{+}}{{\mathit W}^{-}}{{\mathit \gamma}}$ events, and combining with the 42 event sample from 189 GeV data (ACCIARRI 2000T), they obtain: $\mathit a_{0}/\Lambda {}^{2}$= $0.000$ $\pm0.010$ GeV${}^{-2}$, $\mathit a_{\mathit c}/\Lambda {}^{2}$= $-0.013$ $\pm0.023$ GeV${}^{-2}$, and $\mathit a_{\mathit n}/\Lambda {}^{2}$= $-0.002$ $\pm0.076$ GeV${}^{-2}$. Further combining the analyses of ${{\mathit W}^{+}}{{\mathit W}^{-}}{{\mathit \gamma}}$ events with the low recoil mass region of ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit \gamma}}{{\mathit \gamma}}$ events (including samples collected at $183+189$ GeV), they obtain the following one-parameter 95$\%$ CL limits: $-0.015$ GeV${}^{-2}<\mathit a_{0}/\Lambda {}^{2}<0.015$ GeV${}^{-2}$, $-0.048$ GeV${}^{-2}<\mathit a_{\mathit c}/\Lambda {}^{2}<0.026$ GeV${}^{-2}$, and $-0.14$ GeV${}^{-2}<\mathit a_{\mathit n}/\Lambda {}^{2}<0.13$ GeV${}^{-2}$.
|
|