TRIPLE GAUGE COUPLINGS (TGC'S)

$\lambda _{{{\mathit \gamma}}}$

INSPIRE   PDGID:
S043LG
OUR FIT below is taken from [SCHAEL 2013A].

VALUE EVTS DOCUMENT ID TECN  COMMENT
$\bf{ -0.022 \pm0.019}$ OUR FIT
$0.002$ $\pm0.035$ 7872 1
ABDALLAH
2010
DLPH ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $189 - 209$ GeV
$-0.012$ $\pm0.027$ $\pm0.011$ 10689 2
SCHAEL
2005A
ALEP ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $183 - 209$ GeV
$-0.060$ ${}^{+0.034}_{-0.033}$ 9800 3
ABBIENDI
2004D
OPAL ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $183 - 209$ GeV
$-0.021$ ${}^{+0.035}_{-0.034}$ $\pm0.017$ 10575 4
ACHARD
2004D
L3 ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $161 - 209$ GeV
• • We do not use the following data for averages, fits, limits, etc. • •
5
CHATRCHYAN
2014AB
CMS ${\it{}E}^{\it{}pp}_{\rm{}cm}$ = 7 TeV
6
AAD
2013AN
ATLS ${\it{}E}^{\it{}pp}_{\rm{}cm}$ = 7 TeV
7
ABAZOV
2012AG
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
8
ABAZOV
2011AC
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
9
CHATRCHYAN
2011M
CMS ${\it{}E}^{\it{}pp}_{\rm{}cm}$ = 7 TeV
53 10
AARON
2009B
H1 ${\it{}E}^{\it{}ep}_{\rm{}cm}$ = 0.3 TeV
$0.00$ $\pm0.06$ 11
ABAZOV
2009AD
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
12
ABAZOV
2009AJ
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
13
ABAZOV
2008R
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
$0.16$ ${}^{+0.12}_{-0.13}$ 1880 14
ABDALLAH
2008C
DLPH Superseded by ABDALLAH 2010
1617 15
AALTONEN
2007L
CDF ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 GeV
17 16
ABAZOV
2006H
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
141 17
ABAZOV
2005J
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
$0.05$ $\pm0.09$ $\pm0.01$ 2298 18
ABREU
2001I
DLPH ${\it{}E}^{\it{}ee}_{\rm{}cm}$= 183+189 GeV
19
BREITWEG
2000
ZEUS ${{\mathit e}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit W}^{\pm}}$ X, $\sqrt {\mathit s }\approx{}$ 300 GeV
$0.00$ ${}^{+0.10}_{-0.09}$ 331 20
ABBOTT
1999I
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= $1.8$ TeV
1  ABDALLAH 2010 use data on the final states ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}{{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit j}}{{\mathit j}}{{\mathit j}}{{\mathit j}}$, ${{\mathit j}}{{\mathit j}}{{\mathit X}}$, ${{\mathit \ell}}{{\mathit X}}$, at center-of-mass energies between $189 - 209$ GeV at LEP2, where ${{\mathit j}}$ = jet, ${{\mathit \ell}}$ = lepton, and ${{\mathit X}}$ represents missing momentum. The fit is carried out keeping all other parameters fixed at their SM values.
2  SCHAEL 2005A study single$-$photon, single$-{{\mathit W}}$, and $WW-$pair production from 183 to 209 GeV. Each parameter is determined from a single$-$parameter fit in which the other parameters assume their Standard Model values.
3  ABBIENDI 2004D combine results from ${{\mathit W}^{+}}{{\mathit W}^{-}}$ in all decay channels. Only $\mathit CP$-conserving couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95$\%$ confidence interval is $-0.13<\lambda _{{{\mathit \gamma}}}<0.01$.
4  ACHARD 2004D study $WW-$pair production, single$-{{\mathit W}}$ production and single$-$photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained including data from 161 to 183 GeV, ACCIARRI 1999Q. Each parameter is determined from a single$-$parameter fit in which the other parameters assume their Standard Model values.
5  CHATRCHYAN 2014AB measure ${{\mathit W}}{{\mathit \gamma}}$ production cross section for ${{\mathit p}}{}^{\gamma }_{T}>$ 15 GeV and R(${{\mathit \ell}}{{\mathit \gamma}}$) $>$ 0.7, which is the separation between the ${{\mathit \gamma}}$ and the final state charged lepton (${{\mathit e}}$ or ${{\mathit \mu}}$) in the azimuthal angle-pseudorapidity (${{\mathit \phi}}−{{\mathit \eta}}$) plane. After background subtraction the number of ${{\mathit e}}{{\mathit \nu}}{{\mathit \gamma}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \gamma}}$ events is determined to be $3200$ $\pm325$ and $4970$ $\pm543$ respectively, compatible with expectations from the SM. This leads to a 95$\%$ CL limit of $-0.050$ $<{{\mathit \lambda}}_{{{\mathit \gamma}}}<$ 0.037, assuming all other parameters have SM values.
6  AAD 2013AN study ${{\mathit W}}{{\mathit \gamma}}$ production in ${{\mathit p}}{{\mathit p}}$ collisions. In events with no additional jet, 4449 (6578) W decays to electron (muon) are selected, with an expected background of $1662$ $\pm262$ ($2538$ $\pm362$) events. Analysing the photon $p_T$ spectrum above 100 GeV yields a 95$\%$ C.L. limit of $-0.065$ $<$ ${{\mathit \lambda}}_{{{\mathit \gamma}}}$ $<$ 0.061. Supersedes AAD 2012BX.
7  ABAZOV 2012AG combine new results with already published results on ${{\mathit W}}{{\mathit \gamma}}$, ${{\mathit W}}{{\mathit W}}$ and ${{\mathit W}}{{\mathit Z}}$ production in order to determine the couplings with increased precision, superseding ABAZOV 2008R, ABAZOV 2011AC, ABAZOV 2009AJ, ABAZOV 2009AD. The 68$\%$ C.L. result for a formfactor cutoff of $\Lambda $ = 2 TeV is $\lambda _{{{\mathit \gamma}}}$ = $0.007$ ${}^{+0.021}_{-0.022}$.
8  ABAZOV 2011AC study ${{\mathit W}}{{\mathit \gamma}}$ production in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at 1.96 TeV, with the ${{\mathit W}}$ decay products containing an electron or a muon. They select 196 (363) events in the electron (muon) mode, with a SM expectation of 190 (372) events. A likelihood fit to the photon $\mathit E_{T}$ spectrum above 15 GeV yields at 95$\%$ C.L. the result: $-0.08$ $<$ ${{\mathit \lambda}_{{{\gamma}}}}$ $<$ 0.07 for a formfactor ${{\mathit \Lambda}}$ = 2 TeV.
9  CHATRCHYAN 2011M study ${{\mathit W}}{{\mathit \gamma}}$ production in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV using 36$~$pb${}^{-1}{{\mathit p}}{{\mathit p}}$ data with the ${{\mathit W}}$ decaying to electron and muon. The total cross section is measured for photon transverse energy ${{\mathit E}}{}^{{{\mathit \gamma}}}_{T}>$ 10 GeV and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta {{\mathit R}}({{\mathit \ell}},{{\mathit \gamma}})>$ 0.7. The number of candidate (background) events is 452 ($228$ $\pm21$) for the electron channel and 520 ($277$ $\pm25$) for the muon channel. Setting other couplings to their standard model value, they derive a 95$\%$ CL limit of $-0.18$ $<$ ${{\mathit \lambda}_{{{\gamma}}}}<$ 0.17.
10  AARON 2009B study single-${{\mathit W}}$ production in ${{\mathit e}}{{\mathit p}}$ collisions at 0.3 TeV C.M. energy. They select 53 ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}$ $/$ ${{\mathit \mu}}$ events with a standard model expectation of $54.1$ $\pm7.4$ events. Fitting the transverse momentum spectrum of the hadronic recoil system they obtain a 95$\%$ C.L. limit of $-2.5<{{\mathit \lambda}_{{{\gamma}}}}<$ 2.5.
11  ABAZOV 2009AD study the ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}~$2jet process arising in ${{\mathit W}}{{\mathit W}}$ and ${{\mathit W}}{{\mathit Z}}$ production. They select 12,473 (14,392) events in the electron (muon) channel with an expected di-boson signal of 436 (527) events. The results on the anomalous couplings are derived from an analysis of the $p_T$ spectrum of the 2-jet system and quoted at 68$\%$ C.L. and for a form factor of 2 TeV. This measurement is not used for obtaining the mean as it is for a specific form factor. The 95$\%$ confidence interval is $-0.10<$ ${{\mathit \lambda}_{{{\gamma}}}}<$ 0.11.
12  ABAZOV 2009AJ study the ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ 2 ${{\mathit \ell}}$2 ${{\mathit \nu}}$ process arising in ${{\mathit W}}{{\mathit W}}$ production. They select 100 events with an expected ${{\mathit W}}{{\mathit W}}$ signal of 65 events. An analysis of the $p_T$ spectrum of the two charged leptons leads to 95$\%$ C.L. limits of $-0.14<$ ${{\mathit \lambda}_{{{\gamma}}}}<$ 0.18, for a form factor $\Lambda $ = 2 TeV.
13  ABAZOV 2008R use 0.7 fb${}^{-1}{{\mathit p}}{{\overline{\mathit p}}}$ data at $\sqrt {s }$ = 1.96 TeV to select 263 ${{\mathit W}}{{\mathit \gamma}}{+}$ ${{\mathit X}}$ events, of which 187 constitute signal, with the ${{\mathit W}}$ decaying into an electron or a muon, which is required to be well separated from a photon with $\mathit E_{T}>$ 9 GeV. A likelihood fit to the photon $\mathit E_{T}$ spectrum yields a 95$\%$ CL limit $\text{- 0.12}<\lambda _{\gamma }<$ 0.13 with other couplings fixed to their Standard Model values.
14  ABDALLAH 2008C determine this triple gauge coupling from the measurement of the spin density matrix elements in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$ $\rightarrow$ ( ${{\mathit q}}{{\mathit q}}$) ( ${{\mathit \ell}}{{\mathit \nu}}$), where ${{\mathit \ell}}$ = ${{\mathit e}}$ or ${{\mathit \mu}}$. Values of all other couplings are fixed to their standard model values.
15  AALTONEN 2007L set limits on anomalous TGCs using the $p_T({{\mathit W}}$) distribution in ${{\mathit W}}{{\mathit W}}$ and ${{\mathit W}}{{\mathit Z}}$ production with the ${{\mathit W}}$ decaying to an electron or muon and the ${{\mathit Z}}$ to 2 jets. Setting other couplings to their standard model value, the 95$\%$ C.L. limits are $-0.18<{{\mathit \lambda}_{{{\gamma}}}}<$ 0.17 for a form factor scale $\Lambda $ = 1.5 TeV.
16  ABAZOV 2006H study ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ production with a subsequent decay ${{\mathit W}}$ ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}{{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{{e}}}}$, ${{\mathit W}}$ ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \nu}_{{{e}}}}{{\mathit \mu}^{\mp}}{{\mathit \nu}_{{{\mu}}}}$ or ${{\mathit W}}$ ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{{\mu}}}}$. The 95$\%$ C.L. limit for a form factor scale $\Lambda $ = 1 TeV is $\text{- 0.97}<\lambda _{\gamma }<$ 1.04, fixing $\kappa _{\gamma }$=1. With the assumption that the ${{\mathit W}}{{\mathit W}}{{\mathit \gamma}}$ and ${{\mathit W}}{{\mathit W}}{{\mathit Z}}$ couplings are equal the 95$\%$ C.L. one-dimensional limit ($\Lambda $ = 2 TeV) is $-0.29<\lambda <$ 0.30.
17  ABAZOV 2005J perform a likelihood fit to the photon $\mathit E_{T}$ spectrum of ${{\mathit W}}{{\mathit \gamma}}$ $+$ X events, where the ${{\mathit W}}$ decays to an electron or muon which is required to be well separated from the photon. For $\Lambda $ = 2.0 TeV the 95$\%$ CL limits are $-0.20$ $<$ $\lambda _{{{\mathit \gamma}}}$ $<$ 0.20. In the fit ${{\mathit \kappa}_{{{\gamma}}}}$ is kept fixed to its Standard Model value.
18  ABREU 2001I combine results from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ interactions at 189 GeV leading to ${{\mathit W}^{+}}{{\mathit W}^{-}}$, ${{\mathit W}}{{\mathit e}}{{\mathit \nu}_{{{e}}}}$, and ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit \gamma}}$ final states with results from ABREU 1999L at 183 GeV. The 95$\%$ confidence interval is $-0.11<\lambda _{{{\mathit \gamma}}}<0.23$.
19  BREITWEG 2000 search for ${{\mathit W}}$ production in events with large hadronic $p_T$. For $p_T>$20 GeV, the upper limit on the cross section gives the 95$\%$CL limit $-3.2<\lambda _{\gamma }<3.2$ for ${{\mathit \kappa}_{{{\gamma}}}}$ fixed to its Standard Model value.
20  ABBOTT 1999I perform a simultaneous fit to the ${{\mathit W}}{{\mathit \gamma}}$, ${{\mathit W}}$ ${{\mathit W}}$ $\rightarrow$ dilepton, ${{\mathit W}}{{\mathit W}}$/ ${{\mathit W}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit W}}{{\mathit W}}$/ ${{\mathit W}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit W}}$ ${{\mathit Z}}$ $\rightarrow$ trilepton data samples. For $\Lambda $ = $2.0$ TeV, the 95$\%$CL limits are $-0.18<\lambda _{{{\mathit \gamma}}}<0.19$.
References