$\bf{
2.085 \pm0.042}$
|
OUR FIT
|
$2.028$ $\pm0.072$ |
5272 |
1 |
|
D0 |
$2.032$ $\pm0.045$ $\pm0.057$ |
6055 |
2 |
|
CDF |
$2.404$ $\pm0.140$ $\pm0.101$ |
10.3k |
3 |
|
DLPH |
$1.996$ $\pm0.096$ $\pm0.102$ |
10729 |
4 |
|
OPAL |
$2.18$ $\pm0.11$ $\pm0.09$ |
9795 |
5 |
|
L3 |
$2.14$ $\pm0.09$ $\pm0.06$ |
8717 |
6 |
|
ALEP |
$2.23$ ${}^{+0.15}_{-0.14}$ $\pm0.10$ |
294 |
7 |
|
D0 |
$2.05$ $\pm0.10$ $\pm0.08$ |
662 |
8 |
|
CDF |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$2.152$ $\pm0.066$ |
79176 |
9 |
|
D0 |
$2.064$ $\pm0.060$ $\pm0.059$ |
|
10 |
|
CDF |
$2.10$ ${}^{+0.14}_{-0.13}$ $\pm0.09$ |
3559 |
11 |
|
UA2 |
$2.18$ ${}^{+0.26}_{-0.24}$ $\pm0.04$ |
|
12 |
|
UA1 |
1
ABAZOV 2009AK obtain this result fitting the high-end tail (100-200 GeV) of the transverse mass spectrum in ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ decays.
|
2
AALTONEN 2008B obtain this result fitting the high-end tail ($90 - 200$ GeV) of the transverse mass spectrum in semileptonic ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{e}}}$ and ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}_{{\mu}}}$ decays.
|
3
ABDALLAH 2008A use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events. The systematic error includes $\pm0.065$ GeV due to final state interactions.
|
4
ABBIENDI 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events. The systematic error includes $\pm0.003$ GeV due to the uncertainty on the LEP beam energy.
|
5
ACHARD 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events in the C.M. energy range $189 - 209$ GeV. The result quoted here is obtained combining this value of the width with the result obtained from a direct ${{\mathit W}}$ mass reconstruction at 172 and 183 GeV (ACCIARRI 1999 ).
|
6
SCHAEL 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events. The systematic error includes $\pm0.05$ GeV due to possible effects of final state interactions in the ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ channel and $\pm0.01$ GeV due to the uncertainty on the LEP beam energy.
|
7
ABAZOV 2002E obtain this result fitting the high-end tail ($90 - 200$ GeV) of the transverse-mass spectrum in semileptonic ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{e}}}$ decays.
|
8
AFFOLDER 2000M fit the high transverse mass ($100 - 200~$GeV) ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{e}}}$ and ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}_{{\mu}}}$ events to obtain $\Gamma\mathrm {({{\mathit W}})}$= $2.04$ $\pm0.11$(stat)$\pm0.09$(syst) GeV. This is combined with the earlier CDF measurement (ABE 1995C) to obtain the quoted result.
|
9
ABBOTT 2000B measure $\mathit R$ = $10.43$ $\pm0.27$ for the ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{e}}}$ decay channel. They use the SM theoretical predictions for $\sigma\mathrm {({{\mathit W}})}/\sigma\mathrm {({{\mathit Z}})}$ and $\Gamma\mathrm {( {{\mathit W}} \rightarrow {{\mathit e}} {{\mathit \nu}_{{e}}} )}$ and the world average for B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}}{{\mathit e}}$ ). The value quoted here is obtained combining this result ($2.169$ $\pm0.070$ GeV) with that of ABBOTT 1999H.
|
10
ABE 1995W measured $\mathit R$ = $10.90$ $\pm0.32$ $\pm0.29$. They use ${\mathit m}_{{{\mathit W}}}=80.23$ $\pm0.18$ GeV, ${\mathit \sigma (}{{\mathit W}}{)}/{\mathit \sigma (}{{\mathit Z}}{)}$ = $3.35$ $\pm0.03$, $\Gamma\mathrm {( {{\mathit W}} \rightarrow {{\mathit e}} {{\mathit \nu}} )}$ = $225.9$ $\pm0.9$ MeV, $\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit e}^{+}} {{\mathit e}^{-}} )}$ = $83.98$ $\pm0.18$ MeV, and $\Gamma\mathrm {({{\mathit Z}})}$ = $2.4969$ $\pm0.0038$ GeV.
|
11
ALITTI 1992 measured $\mathit R$ = $10.4$ ${}^{+0.7}_{-0.6}$ $\pm0.3$. The values of ${\mathit \sigma (}{{\mathit Z}}{)}$ and ${\mathit \sigma (}{{\mathit W}}{)}$ come from $\mathit O(\alpha {}^{2}_{\mathit s}$) calculations using ${\mathit m}_{{{\mathit W}}}$ = $80.14$ $\pm0.27$ GeV, and ${\mathit m}_{{{\mathit Z}}}$ = $91.175$ $\pm0.021$ GeV along with the corresponding value of sin$^2\theta _{{{\mathit W}}}$ = $0.2274$. They use ${\mathit \sigma (}{{\mathit W}}{)}/{\mathit \sigma (}{{\mathit Z}}{)}$ = $3.26$ $\pm0.07$ $\pm0.05$ and $\Gamma\mathrm {({{\mathit Z}})}$ = $2.487$ $\pm0.010$ GeV.
|
12
ALBAJAR 1991 measured $\mathit R$ = $9.5$ ${}^{+1.1}_{-1.0}$ (stat. + syst.). ${\mathit \sigma (}{{\mathit W}}{)}/{\mathit \sigma (}{{\mathit Z}}{)}$ is calculated in QCD at the parton level using ${\mathit m}_{{{\mathit W}}}$ = $80.18$ $\pm0.28$ GeV and ${\mathit m}_{{{\mathit Z}}}$ = $91.172$ $\pm0.031$ GeV along with sin$^2\theta _{\mathit W}$ = $0.2322$ $\pm0.0014$. They use ${\mathit \sigma (}{{\mathit W}}{)}/{\mathit \sigma (}{{\mathit Z}}{)}$ = $3.23$ $\pm0.05$ and $\Gamma\mathrm {({{\mathit Z}})}$ = $2.498$ $\pm0.020$ GeV. This measurement is obtained combining both the electron and muon channels.
|