${{\mathit W}}$ WIDTH

INSPIRE   PDGID:
S043W
The ${{\mathit W}}$ width listed here corresponds to the width parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world average, common systematic uncertainties between experiments are properly taken into account. The LEP-2 average ${{\mathit W}}$ width based on published results is $2.195$ $\pm0.083$ GeV [SCHAEL 2013A]. The combined Tevatron data yields an average W width of $2.046$ $\pm0.049$ GeV [FERMILAB-TM-2460-E].

OUR FIT uses these average LEP and Tevatron width values and combines them assuming no correlations.
VALUE (GeV) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 2.085 \pm0.042}$ OUR FIT
$2.028$ $\pm0.072$ 5272 1
ABAZOV
2009AK
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 GeV
$2.032$ $\pm0.045$ $\pm0.057$ 6055 2
AALTONEN
2008B
CDF ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
$2.404$ $\pm0.140$ $\pm0.101$ 10.3k 3
ABDALLAH
2008A
DLPH ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $183 - 209$ GeV
$1.996$ $\pm0.096$ $\pm0.102$ 10729 4
ABBIENDI
2006
OPAL ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $170 - 209$ GeV
$2.18$ $\pm0.11$ $\pm0.09$ 9795 5
ACHARD
2006
L3 ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $172 - 209$ GeV
$2.14$ $\pm0.09$ $\pm0.06$ 8717 6
SCHAEL
2006
ALEP ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $183 - 209$ GeV
$2.23$ ${}^{+0.15}_{-0.14}$ $\pm0.10$ 294 7
ABAZOV
2002E
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.8 TeV
$2.05$ $\pm0.10$ $\pm0.08$ 662 8
AFFOLDER
2000M
CDF ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.8 TeV
• • We do not use the following data for averages, fits, limits, etc. • •
$2.152$ $\pm0.066$ 79176 9
ABBOTT
2000B
D0 Extracted value
$2.064$ $\pm0.060$ $\pm0.059$ 10
ABE
1995W
CDF Extracted value
$2.10$ ${}^{+0.14}_{-0.13}$ $\pm0.09$ 3559 11
ALITTI
1992
UA2 Extracted value
$2.18$ ${}^{+0.26}_{-0.24}$ $\pm0.04$ 12
ALBAJAR
1991
UA1 Extracted value
1  ABAZOV 2009AK obtain this result fitting the high-end tail (100-200 GeV) of the transverse mass spectrum in ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ decays.
2  AALTONEN 2008B obtain this result fitting the high-end tail ($90 - 200$ GeV) of the transverse mass spectrum in semileptonic ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{{e}}}}$ and ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}_{{{\mu}}}}$ decays.
3  ABDALLAH 2008A use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events. The systematic error includes $\pm0.065$ GeV due to final state interactions.
4  ABBIENDI 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events. The systematic error includes $\pm0.003$ GeV due to the uncertainty on the LEP beam energy.
5  ACHARD 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events in the C.M. energy range $189 - 209$ GeV. The result quoted here is obtained combining this value of the width with the result obtained from a direct ${{\mathit W}}$ mass reconstruction at 172 and 183 GeV (ACCIARRI 1999).
6  SCHAEL 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events. The systematic error includes $\pm0.05$ GeV due to possible effects of final state interactions in the ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ channel and $\pm0.01$ GeV due to the uncertainty on the LEP beam energy.
7  ABAZOV 2002E obtain this result fitting the high-end tail ($90 - 200$ GeV) of the transverse-mass spectrum in semileptonic ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{{e}}}}$ decays.
8  AFFOLDER 2000M fit the high transverse mass ($100 - 200~$GeV) ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{{e}}}}$ and ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}_{{{\mu}}}}$ events to obtain $\Gamma\mathrm {({{\mathit W}})}$= $2.04$ $\pm0.11$(stat)$\pm0.09$(syst) GeV. This is combined with the earlier CDF measurement (ABE 1995C) to obtain the quoted result.
9  ABBOTT 2000B measure $\mathit R$ = $10.43$ $\pm0.27$ for the ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{{e}}}}$ decay channel. They use the SM theoretical predictions for $\sigma\mathrm {({{\mathit W}})}/\sigma\mathrm {({{\mathit Z}})}$ and $\Gamma\mathrm {( {{\mathit W}} \rightarrow {{\mathit e}} {{\mathit \nu}_{{{e}}}})}$ and the world average for B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}}{{\mathit e}}$). The value quoted here is obtained combining this result ($2.169$ $\pm0.070$ GeV) with that of ABBOTT 1999H.
10  ABE 1995W measured $\mathit R$ = $10.90$ $\pm0.32$ $\pm0.29$. They use ${\mathit m}_{{{\mathit W}}}=80.23$ $\pm0.18$ GeV, ${\mathit \sigma (}{{\mathit W}}{)}/{\mathit \sigma (}{{\mathit Z}}{)}$ = $3.35$ $\pm0.03$, $\Gamma\mathrm {( {{\mathit W}} \rightarrow {{\mathit e}} {{\mathit \nu}})}$ = $225.9$ $\pm0.9$ MeV, $\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit e}^{+}} {{\mathit e}^{-}})}$ = $83.98$ $\pm0.18$ MeV, and $\Gamma\mathrm {({{\mathit Z}})}$ = $2.4969$ $\pm0.0038$ GeV.
11  ALITTI 1992 measured $\mathit R$ = $10.4$ ${}^{+0.7}_{-0.6}$ $\pm0.3$. The values of ${\mathit \sigma (}{{\mathit Z}}{)}$ and ${\mathit \sigma (}{{\mathit W}}{)}$ come from $\mathit O(\alpha {}^{2}_{\mathit s}$) calculations using ${\mathit m}_{{{\mathit W}}}$ = $80.14$ $\pm0.27$ GeV, and ${\mathit m}_{{{\mathit Z}}}$ = $91.175$ $\pm0.021$ GeV along with the corresponding value of sin$^2\theta _{{{\mathit W}}}$ = $0.2274$. They use ${\mathit \sigma (}{{\mathit W}}{)}/{\mathit \sigma (}{{\mathit Z}}{)}$ = $3.26$ $\pm0.07$ $\pm0.05$ and $\Gamma\mathrm {({{\mathit Z}})}$ = $2.487$ $\pm0.010$ GeV.
12  ALBAJAR 1991 measured $\mathit R$ = $9.5$ ${}^{+1.1}_{-1.0}$ (stat. + syst.). ${\mathit \sigma (}{{\mathit W}}{)}/{\mathit \sigma (}{{\mathit Z}}{)}$ is calculated in QCD at the parton level using ${\mathit m}_{{{\mathit W}}}$ = $80.18$ $\pm0.28$ GeV and ${\mathit m}_{{{\mathit Z}}}$ = $91.172$ $\pm0.031$ GeV along with sin$^2\theta _{\mathit W}$ = $0.2322$ $\pm0.0014$. They use ${\mathit \sigma (}{{\mathit W}}{)}/{\mathit \sigma (}{{\mathit Z}}{)}$ = $3.23$ $\pm0.05$ and $\Gamma\mathrm {({{\mathit Z}})}$ = $2.498$ $\pm0.020$ GeV. This measurement is obtained combining both the electron and muon channels.
References