${{\mathit Z}}$ WIDTH

INSPIRE   PDGID:
S044W
OUR EVALUATION is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note “The ${{\mathit Z}}$ boson” and ref. LEP-SLC 2006). Corrections as discussed in VOUTSINAS 2020 and JANOT 2020 are also included.
VALUE (GeV) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 2.4955 \pm0.0023}$ OUR EVALUATION
$2.4955$ $\pm0.0023$ 1
JANOT
2020
• • We do not use the following data for averages, fits, limits, etc. • •
$2.4955$ $\pm0.0023$ 2
VOUTSINAS
2020
$2.4952$ $\pm0.0023$
LEP-SLC
2006
${\it{}E}^{\it{}ee}_{\rm{}cm}$ = $88 - 94$ GeV
$2.4943$ $\pm0.0041$ 3
ABBIENDI
2004G
OPAL ${\it{}E}^{\it{}ee}_{\rm{}cm}$= LEP1 + $130 - 209$ GeV
$2.4948$ $\pm0.0041$ 4.57M 4
ABBIENDI
2001A
OPAL ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $88 - 94$ GeV
$2.4876$ $\pm0.0041$ 4.08M 5
ABREU
2000F
DLPH ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $88 - 94$ GeV
$2.5024$ $\pm0.0042$ 3.96M 6
ACCIARRI
2000C
L3 ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $88 - 94$ GeV
$2.5025$ $\pm0.0041$ 3.97M 7
ACCIARRI
2000Q
L3 ${\it{}E}^{\it{}ee}_{\rm{}cm}$= LEP1 + $130 - 189$ GeV
$2.4951$ $\pm0.0043$ 4.57M 8
BARATE
2000C
ALEP ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $88 - 94$ GeV
$2.50$ $\pm0.21$ $\pm0.06$ 9
ABREU
1996R
DLPH ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $91.2$ GeV
$3.8$ $\pm0.8$ $\pm1.0$ 188
ABE
1989C
CDF ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= $1.8$ TeV
$2.42$ ${}^{+0.45}_{-0.35}$ 480 10
ABRAMS
1989B
MRK2 ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $89 - 93$ GeV
$2.7$ ${}^{+1.2}_{-1.0}$ $\pm1.3$ 24 11
ALBAJAR
1989
UA1 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= 546,630 GeV
$2.7$ $\pm2.0$ $\pm1.0$ 25 12
ANSARI
1987
UA2 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= 546,630 GeV
1  JANOT 2020 applies a correction to LEP-SLC 2006 using an updated Bhabha cross section calculation. This result also includes a correction to account for correlated luminosity bias as presented in VOUTSINAS 2020.
2  VOUTSINAS 2020 applies a correction to LEP-SLC 2006 to account for correlated luminosity bias.
3  ABBIENDI 2004G obtain this result using the S$-$matrix formalism for a combined fit to their cross section and asymmetry data at the ${{\mathit Z}}$ peak and their data at $130 - 209$ GeV. The authors have corrected the measurement for the 1 MeV shift with respect to the Breit$-$Wigner fits.
4  ABBIENDI 2001A error includes approximately $3.6$ MeV due to statistics, 1$~$MeV due to event selection systematics, and $1.3$ MeV due to LEP energy uncertainty.
5  The error includes $1.2$ MeV due to LEP energy uncertainty.
6  The error includes $1.3$ MeV due to LEP energy uncertainty.
7  ACCIARRI 2000Q interpret the $\mathit s$-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to ${{\mathit Z}}$-peak data (ACCIARRI 2000C) as constraints. The $130 - 189$ GeV data constrains the ${{\mathit \gamma}}/{{\mathit Z}}$ interference term. The authors have corrected the measurement for the $0.9$ MeV shift with respect to the Breit-Wigner fits.
8  BARATE 2000C error includes approximately $3.8$ MeV due to statistics, $0.9~$MeV due to experimental systematics, and $1.3~$MeV due to LEP energy uncertainty.
9  ABREU 1996R obtain this value from a study of the interference between initial and final state radiation in the process ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$.
10  ABRAMS 1989B uncertainty includes 50 MeV due to the miniSAM background subtraction error.
11  ALBAJAR 1989 result is from a total sample of 33 ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ events.
12  Quoted values of ANSARI 1987 are from direct fit. Ratio of ${{\mathit Z}}$ and ${{\mathit W}}$ production gives either $\Gamma\mathrm {({{\mathit Z}})}$ $<$ ($1.09$ $\pm0.07$) ${\times }$ $\Gamma\mathrm {({{\mathit W}})}$, CL = 90$\%$ or $\Gamma\mathrm {({{\mathit Z}})}$ = ($0.82$ ${}^{+0.19}_{-0.14}$ $\pm0.06$) ${\times }$ $\Gamma\mathrm {({{\mathit W}})}$. Assuming Standard-Model value $\Gamma\mathrm {({{\mathit W}})}$ = 2.65 GeV then gives $\Gamma\mathrm {({{\mathit Z}})}$ $<$ $2.89$ $\pm0.19$ or = $2.17$ ${}^{+0.50}_{-0.37}$ $\pm0.16$.
References