${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}-{{\mathit p}}$ elastic cross section

Experimental results on the ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}-{{\mathit p}}$ elastic cross section are evaluated at ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=100 GeV. The experimental results on the cross section are often mass dependent. Therefore, the mass and cross section results are also given where the limit is strongest, when appropriate. Results are quoted separately for spin-dependent interactions (based on an effective 4-Fermi Lagrangian of the form ${{\overline{\mathit \chi}}}\gamma {}^{\mu }\gamma {}^{5}\chi {{\overline{\mathit q}}}\gamma _{\mu }\gamma {}^{5}{{\mathit q}}$) and spin-independent interactions (${{\overline{\mathit \chi}}}\chi {{\overline{\mathit q}}}{{\mathit q}}$). For calculational details see GRIEST 1988B, ELLIS 1988D, BARBIERI 1989C, DREES 1993B, ARNOWITT 1996, BERGSTROM 1996, and BAER 1997 in addition to the theory papers listed in the Tables. For a description of the theoretical assumptions and experimental techniques underlying most of the listed papers, see the review on “Dark matter” in this “Review of Particle Physics,” and references therein. Most of the following papers use galactic halo and nuclear interaction assumptions from (LEWIN 1996).

Spin-dependent interactions

INSPIRE   PDGID:
S046DM1
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<1.9 \times 10^{-4}$ 90 1
AALBERS
2023
LZ ${}^{}\mathrm {Xe}$
$<3.3 \times 10^{-4}$ 90 2
APRILE
2023A
XENT ${}^{}\mathrm {Xe}$
$<2 \times 10^{-4}$ 90 3
HUANG
2022
PNDX ${}^{}\mathrm {Xe}$
$<4 \times 10^{-5}$ 90 4
AMOLE
2019
PICO C$_{3}F_{8}$
$<5 \times 10^{-4}$ 90 5
APRILE
2019A
XE1T ${}^{}\mathrm {Xe}$
$<8 \times 10^{-4}$ 90 6
AKERIB
2017A
LUX ${}^{}\mathrm {Xe}$
$<0.28$ 90 7
BATTAT
2017
DRFT CS$_{2}$; CF$_{4}$
$<0.027$ 90 8
BEHNKE
2017
PICA C$_{4}F_{10}$
$<5 \times 10^{-4}$ 90 9
AMOLE
2016
PICO CF$_{3}$I
$<6.8 \times 10^{-3}$ 90 10
APRILE
2016B
X100 ${}^{}\mathrm {Xe}$
$<6.3 \times 10^{-3}$ 90 11
FELIZARDO
2014
SMPL C$_{2}$ClF$_{5}$
$<0.01$ 90 12
AKIMOV
2012
ZEP3 ${}^{}\mathrm {Xe}$
$<7 \times 10^{-3}$ 13
BEHNKE
2012
COUP CF$_{3}$I
$<8.5 \times 10^{-3}$ 14
FELIZARDO
2012
SMPL C$_{2}$ClF$_{5}$
$<0.016$ 90 15
KIM
2012
KIMS CsI
$5 \times 10^{-10} \text{ to }\text{E-5}$ 95 16
BUCHMUELLER
2011B
THEO
$<1$ 90 17
ANGLE
2008A
XE10 ${}^{}\mathrm {Xe}$
$<0.055$ 18
BEDNYAKOV
2008
HDMS ${}^{}\mathrm {Ge}$
$<0.33$ 90 19
BEHNKE
2008
COUP CF$_{3}$I
$<5$ 20
AKERIB
2006
CDMS Ge
$<2$ 21
SHIMIZU
2006A
CNTR CaF$_{2}$
$<0.4$ 22
ALNER
2005
NAIA NaI Spin Dep.
$<2$ 23
BARNABE-HEIDE..
2005
PICA C
$2 \times 10^{-11} \text{ to 1 }\times 10^{-4}$ 24
ELLIS
2004
THEO ${{\mathit \mu}}$ $>$ 0
$<0.8$ 25
AHMED
2003
NAIA NaI Spin Dep.
$<40$ 26
TAKEDA
2003
BOLO NaF Spin Dep.
$<10$ 27
ANGLOHER
2002
CRES Saphire
$8 \times 10^{-7} \text{ to 2 }\times 10^{-5}$ 28
ELLIS
2001C
THEO tan $\beta {}\leq{}$10
$<3.8$ 29
BERNABEI
2000D
DAMA Xe
$<0.8$
SPOONER
2000
UKDM NaI
$<4.8$ 30
BELLI
1999C
DAMA ${}^{}\mathrm {F}$
$<100$ 31
OOTANI
1999
BOLO ${}^{}\mathrm {Li}{}^{}\mathrm {F}$
$<0.6$
BERNABEI
1998C
DAMA Xe
$<5$ 30
BERNABEI
1997
DAMA F
1  The strongest upper limit is $4.2 \times 10^{-5}$ pb at 32 GeV. The limit for scattering on neutrons is $4 \times 10^{-6}$ pb at 100 GeV and is $1.5 \times 10^{-6}$ pb at 30 GeV.
2  The strongest upper limit is $1.4 \times 10^{-4}$ pb at 28 GeV. The limit for scattering on neutrons is $1.1 \times 10^{-5}$ pb at 100 GeV and is $4.3 \times 10^{-6}$ pb at 28 GeV.
3  The strongest limit is $<$ $1.7 \times 10^{-4}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 40 GeV. This updates FU 2017 and XIA 2019A.
4  The strongest limit is $<$ $3.2 \times 10^{-5}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 25 GeV. This updates AMOLE 2017.
5  The strongest limit is $<$ $2 \times 10^{-4}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 30 GeV. For scatterings on neutrons, the strongest limit is $<$ $6.3 \times 10^{-6}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 30 GeV.
6  The strongest limit is $5 \times 10^{-4}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV. The limit for scattering on neutrons is $3 \times 10^{-5}$ pb at 100 GeV and is $1.6 \times 10^{-5}$ pb at 35 GeV. This updates AKERIB 2016A.
7  Directional recoil detector. This updates DAW 2012.
8  This result updates ARCHAMBAULT 2012. The strongest limit is 0.013 pb at ${\mathit m}_{{{\mathit \chi}}}$ = 20 GeV.
9  The strongest limit is $5 \times 10^{-4}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 80 GeV.
10  The strongest limit is $5.2 \times 10^{-3}$ pb at 50 GeV. The limit for scattering on neutrons is $2.8 \times 10^{-4}$ pb at 100 GeV and the strongest limit is $2.0 \times 10^{-4}$ pb at 50 GeV. This updates APRILE 2013.
11  The strongest limit is 0.0043 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV. FELIZARDO 2014 also presents limits for the scattering on neutrons. At ${\mathit m}_{{{\mathit \chi}}}$ = 100 GeV, the upper limit is 0.13 pb and the strongest limit is 0.066 pb at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV.
12  This result updates LEBEDENKO 2009A. The strongest limit is $8 \times 10^{-3}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 50 GeV. Limit applies to the neutralino neutron elastic cross section.
13  The strongest limit is $6 \times 10^{-3}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 60 GeV.
14  The strongest limit is $5.7 \times 10^{-3}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV.
15  This result updates LEE 2007A. The strongest limit is at ${\mathit m}_{{{\mathit \chi}}}$ = 80 GeV.
16  Predictions for the spin-dependent elastic cross section based on a frequentist approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
17  The strongest limit is 0.6 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$= 30 GeV. The limit for scattering on neutrons is 0.01 pb at ${\mathit m}_{{{\mathit \chi}}}$= 100 GeV, and the strongest limit is 0.0045 pb at ${\mathit m}_{{{\mathit \chi}}}$= 30$~$GeV.
18  Limit applies to neutron elastic cross section.
19  The strongest upper limit is 0.25 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$40 GeV.
20  The strongest upper limit is 4 pb and occurs at ${{\mathit m}_{{{\chi}}}}$ $\simeq{}$ 60 GeV. The limit on the neutron spin-dependent elastic cross section is 0.07 pb. This latter limit is improved in AHMED 2009, where a limit of 0.02 pb is obtained at ${\mathit m}_{{{\mathit \chi}}}$ = 100 GeV. The strongest limit in AHMED 2009 is 0.018 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ = 60 GeV.
21  The strongest upper limit is 1.2 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 40 GeV. The limit on the neutron spin-dependent cross section is 35 pb.
22  The strongest upper limit is 0.35 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 60 GeV.
23  The strongest upper limit is 1.2 pb and occurs ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 30 GeV.
24  ELLIS 2004 calculates the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses. In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes $2 \times 10^{-4}$, see ELLIS 2003E.
25  The strongest upper limit is 0.75 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\approx{}$70 GeV.
26  The strongest upper limit is 30 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\approx{}$ 20~GeV.
27  The strongest upper limit is 8 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV.
28  ELLIS 2001C calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. In models with nonuniversal Higgs masses, the upper limit to the cross section is $6 \times 10^{-4}$.
29  The strongest upper limit is 3 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$60 GeV. The limits are for inelastic scattering ${{\mathit X}^{0}}$ ${+}$ ${}^{129}\mathrm {Xe}$ $\rightarrow$ ${{\mathit X}^{0}}{+}$ ${}^{129}\mathrm {Xe}^{*}$ (39.58 keV).
30  The strongest upper limit is 4.4 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$60 GeV.
31  The strongest upper limit is about 35 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$15 GeV.
References