${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}-{{\mathit p}}$ elastic cross section

Experimental results on the ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}-{{\mathit p}}$ elastic cross section are evaluated at ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=100 GeV. The experimental results on the cross section are often mass dependent. Therefore, the mass and cross section results are also given where the limit is strongest, when appropriate. Results are quoted separately for spin-dependent interactions (based on an effective 4-Fermi Lagrangian of the form ${{\overline{\mathit \chi}}}\gamma {}^{\mu }\gamma {}^{5}\chi {{\overline{\mathit q}}}\gamma _{\mu }\gamma {}^{5}{{\mathit q}}$) and spin-independent interactions (${{\overline{\mathit \chi}}}\chi {{\overline{\mathit q}}}{{\mathit q}}$). For calculational details see GRIEST 1988B, ELLIS 1988D, BARBIERI 1989C, DREES 1993B, ARNOWITT 1996, BERGSTROM 1996, and BAER 1997 in addition to the theory papers listed in the Tables. For a description of the theoretical assumptions and experimental techniques underlying most of the listed papers, see the review on “Dark matter” in this “Review of Particle Physics,” and references therein. Most of the following papers use galactic halo and nuclear interaction assumptions from (LEWIN 1996).

Spin-independent interactions

INSPIRE   PDGID:
S046DM2
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<3 \times 10^{-11}$ 90 1
AALBERS
2023
LZ ${}^{}\mathrm {Xe}$
$<6.1 \times 10^{-11}$ 90 2
APRILE
2023A
XENT ${}^{}\mathrm {Xe}$
$<6.5 \times 10^{-11}$ 90 3
MENG
2021B
PNDX ${}^{}\mathrm {Xe}$
$<5 \times 10^{-10}$ 90 4
WANG
2020G
PNDX ${}^{}\mathrm {Xe}$
$<2.5 \times 10^{-8}$ 90 5
ABE
2019
XMAS ${}^{}\mathrm {Xe}$
$<3.9 \times 10^{-9}$ 90 6
AJAJ
2019
DEAP ${}^{}\mathrm {Ar}$
$<2 \times 10^{-8}$ 90 7
AMOLE
2019
PICO C$_{3}F_{8}$
$<2.25 \times 10^{-6}$ 90 8
ADHIKARI
2018
C100 ${}^{}\mathrm {NaI}$
$<1.14 \times 10^{-8}$ 90 9
AGNES
2018A
DS50 ${}^{}\mathrm {Ar}$
$<1.6 \times 10^{-8}$ 90 10
AGNESE
2018A
CDMS ${}^{}\mathrm {Ge}$
$<9 \times 10^{-11}$ 90 11
APRILE
2018
XE1T ${}^{}\mathrm {Xe}$
$<1.8 \times 10^{-10}$ 90 12
AKERIB
2017
LUX ${}^{}\mathrm {Xe}$
$<1.5 \times 10^{-9}$ 90 13
APRILE
2016B
X100 ${}^{}\mathrm {Xe}$
$<1.5 \times 10^{-9}$ 90 14
AKERIB
2014
LUX ${}^{}\mathrm {Xe}$
$10^{-11} - 10^{-7}$ 95 15
BUCHMUELLER
2014A
THEO
$<4.6 \times 10^{-6}$ 90 16
FELIZARDO
2014
SMPL C$_{2}$ClF$_{5}$
$10^{-11} - 10^{-8}$ 95 17
ROSZKOWSKI
2014
THEO
$<2.2 \times 10^{-6}$ 90 18
AGNESE
2013
CDMS ${}^{}\mathrm {Si}$
$<5 \times 10^{-8}$ 90 19
AKIMOV
2012
ZEP3 ${}^{}\mathrm {Xe}$
$1.6 \times 10^{-6}; 3.7 \times 10^{-5}$ 20
ANGLOHER
2012
CRES CaWO$_{4}$
$3 \times 10^{-12} \text{ to 3 }\times 10^{-9}$ 95 21
BECHTLE
2012
THEO
$<1.6 \times 10^{-7}$ 22
BEHNKE
2012
COUP CF$_{3}$I
$<2.3 \times 10^{-7}$ 90 23
KIM
2012
KIMS CsI
$<3.3 \times 10^{-8}$ 90 24
AHMED
2011A
${}^{}\mathrm {Ge}$
$<4.4 \times 10^{-8}$ 90 25
ARMENGAUD
2011
EDE2 ${}^{}\mathrm {Ge}$
$<1 \times 10^{-7}$ 90 26
ANGLE
2008
XE10 Xe
$<1 \times 10^{-6}$ 90
BENETTI
2008
WARP ${}^{}\mathrm {Ar}$
$<7.5 \times 10^{-7}$ 90 27
ALNER
2007A
ZEP2 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-7}$ 28
AKERIB
2006A
CDMS Ge
$<90 \times 10^{-7}$
ALNER
2005
NAIA NaI Spin Indep.
$<12 \times 10^{-7}$ 29
ALNER
2005A
ZEPL
$<14 \times 10^{-7}$
SANGLARD
2005
EDEL Ge
$<4 \times 10^{-7}$ 30
AKERIB
2004
CDMS Ge
$2 \times 10^{-11} \text{ to 1.5 }\times 10^{-7}$ 95 31
BALTZ
2004
THEO
$2 \times 10^{-11} \text{ to 8 }\times 10^{-6}$ 32, 33
ELLIS
2004
THEO ${{\mathit \mu}}$ $>$ 0
$<5 \times 10^{-8}$ 34
PIERCE
2004A
THEO
$<2 \times 10^{-5}$ 35
AHMED
2003
NAIA NaI Spin Indep.
$<3 \times 10^{-6}$ 36
AKERIB
2003
CDMS Ge
$2 \times 10^{-13} \text{ to 2 }\times 10^{-7}$ 37
BAER
2003A
THEO
$<1.4 \times 10^{-5}$ 38
KLAPDOR-KLEIN..
2003
HDMS Ge
$<6 \times 10^{-6}$ 39
ABRAMS
2002
CDMS Ge
$1 \times 10^{-12} \text{ to 7 }\times 10^{-6}$ 32
KIM
2002B
THEO
$<3 \times 10^{-5}$ 40
MORALES
2002B
CSME Ge
$<1 \times 10^{-5}$ 41
MORALES
2002C
IGEX Ge
$<1 \times 10^{-6}$
BALTZ
2001
THEO
$<3 \times 10^{-5}$ 42
BAUDIS
2001
HDMS Ge
$<7 \times 10^{-6}$ 43
BOTTINO
2001
THEO
$<1 \times 10^{-8}$ 44
CORSETTI
2001
THEO tan $\beta {}\leq{}$25
$5 \times 10^{-10} \text{ to 1.5 }\times 10^{-8}$ 45
ELLIS
2001C
THEO tan $\beta {}\leq{}$10
$<4 \times 10^{-6}$ 44
GOMEZ
2001
THEO
$2 \times 10^{-10} \text{ to 1 }\times 10^{-7}$ 44
LAHANAS
2001
THEO
$<3 \times 10^{-6}$
ABUSAIDI
2000
CDMS Ge, Si
$<6 \times 10^{-7}$ 46
ACCOMANDO
2000
THEO
47
BERNABEI
2000
DAMA NaI
$2.5 \times 10^{-9} \text{ to 3.5 }\times 10^{-8}$ 48
FENG
2000
THEO tan $\beta $=10
$<1.5 \times 10^{-5}$
MORALES
2000
IGEX Ge
$<4 \times 10^{-5}$
SPOONER
2000
UKDM NaI
$<7 \times 10^{-6}$
BAUDIS
1999
HDMO ${}^{76}\mathrm {Ge}$
$<7 \times 10^{-6}$
BERNABEI
1998C
DAMA Xe
1  The strongest upper limit is $9.2 \times 10^{-12}$ pb at 36 GeV.
2  The strongest upper limit is $2.6 \times 10^{-11}$ pb at 28 GeV.
3  Commissioning Run for PandaX-4T. The strongest limit is $3.8 \times 10^{-11}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 40 GeV.
4  WANG 2020G strongest limit is $2.2 \times 10^{-10}$ pb at 30 GeV using 132 ton-day full exposure of PandaX-II. This updates CUI 2017A, though the results here provide weaker constraints.
5  The strongest upper limit is $2.2 \times 10^{-8}$ pb at 60 GeV.
6  This updates AMAUDRUZ 2018.
7  This updates AMOLE 2016.
8  The strongest limit is $2.05 \times 10^{-6}$ at m = 60 GeV.
9  The strongest limit is $1.09 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 126 GeV. This updates AGNES 2015.
10  The strongest limit is $1.0 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 46 GeV. This updates AGNESE 2015B.
11  Based on 278.8 days of data collection. The strongest limit is $4.1 \times 10^{-11}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 30 GeV. This updates APRILE 2017G.
12  AKERIB 2017. The strongest limit is $1.1 \times 10^{-10}$ pb at 50 GeV. This updates AKERIB 2016.
13  The strongest limit is $1.1 \times 10^{-9}$ pb at 50 GeV. This updates APRILE 2012.
14  The strongest upper limit is $7.6 \times 10^{-10}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 33 GeV.
15  Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 20 fb${}^{-1}$ 8 TeV and the 5 fb${}^{-1}$ 7 TeV LHC data and the LUX data.
16  The strongest limit is $3.6 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV. Felizardo 2014 updates Felizardo 2012.
17  Predictions for the spin-independent elastic cross section based on a Bayesian approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 20 fb${}^{-1}$ LHC data and LUX.
18  AGNESE 2013 presents 90$\%$ CL limits on the elastic cross section for masses in the range $7 - 100$ GeV using the ${}^{}\mathrm {Si}$ based detector. The strongest upper limit is $1.8 \times 10^{-6}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 50 GeV. This limit is improved to $7 \times 10^{-7}$ pb in AGNESE 2013A.
19  This result updates LEBEDENKO 2009. The strongest limit is $3.9 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 52 GeV.
20  ANGLOHER 2012 presents results of 730 kg days from the CRESST-II dark matter detector. They find two maxima in the likelihood function corresponding to best fit WIMP masses of 25.3 and 11.6 GeV with elastic cross sections of $1.6 \times 10^{-6}$ and $3.7 \times 10^{-5}$ pb respectively, see their Table 4. The statistical significance is more than 4$\sigma $. ANGLOHER 2012 updates ANGLOHER 2009
21  Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 5 fb${}^{-1}$ LHC data and XENON100.
22  The strongest limit is $1.4 \times 10^{-7}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 60 GeV.
23  This result updates LEE 2007A. The strongest limit is $2.1 \times 10^{-7}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 70 GeV.
24  AHMED 2011A gives combined results from CDMS and EDELWEISS. The strongest limit is at ${\mathit m}_{{{\mathit \chi}}}$ = 90 GeV.
25  ARMENGAUD 2011 updates result of ARMENGAUD 2010. Strongest limit at ${\mathit m}_{{{\mathit \chi}}}$ = 85$~$GeV.
26  The strongest upper limit is $5.1 \times 10^{-8}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV. The values quoted here are based on the analysis performed in ANGLE 2008 with the update from SORENSEN 2009.
27  The strongest upper limit is $6.6 \times 10^{-7}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 65 GeV.
28  AKERIB 2006A updates the results of AKERIB 2005. The strongest upper limit is $1.6 \times 10^{-7}~$pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\approx{}$ 60 GeV.
29  The strongest upper limit is also close to $1.0 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 70 GeV. BENOIT 2006 claim that the discrimination power of ZEPLIN-I measurement (ALNER 2005A) is not reliable enough to obtain a limit better than $1 \times 10^{-3}$ pb. However, SMITH 2006 do not agree with the criticisms of BENOIT 2006.
30  AKERIB 2004 is incompatible with BERNABEI 2000 most likely value, under the assumption of standard WIMP-halo interactions. The strongest upper limit is $4 \times 10^{-7}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$60 GeV.
31  Predictions for the spin-independent elastic cross section in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
32  KIM 2002 and ELLIS 2004 calculate the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses.
33  In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes $2 \times 10^{-6}$ ($2 \times 10^{-11}$ when constraint from the BNL $\mathit g−$2 experiment are included), see ELLIS 2003E. ELLIS 2005 display the sensitivity of the elastic scattering cross section to the ${{\mathit \pi}}$-Nucleon ${{\mathit \Sigma}}$ term.
34  PIERCE 2004A calculates the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in the framework of models with very heavy scalar masses. See Fig. 2 of the paper.
35  The strongest upper limit is $1.8 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\approx{}$80 GeV.
36  Under the assumption of standard WIMP-halo interactions, Akerib 03 is incompatible with BERNABEI 2000 most likely value at the 99.98$\%$ CL. See Fig. 4.
37  BAER 2003A calculates the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in several models including the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
38  The strongest upper limit is $7 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV.
39  ABRAMS 2002 is incompatible with the DAMA most likely value at the 99.9$\%$ CL. The strongest upper limit is $3 \times 10^{-6}~$pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV.
40  The strongest upper limit is $2 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$40 GeV.
41  The strongest upper limit is $7 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$46 GeV.
42  The strongest upper limit is $1.8 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$32 GeV
43  BOTTINO 2001 calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of the following supersymmetric models: $\mathit N$=1 supergravity with the radiative breaking of the electroweak gauge symmetry, $\mathit N$=1 supergravity with nonuniversal scalar masses and an effective MSSM model at the electroweak scale.
44  Calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
45  ELLIS 2001C calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. ELLIS 2002B find a range $2 \times 10^{-8} - 1.5 \times 10^{-7}$ at tan $\beta $=50. In models with nonuniversal Higgs masses, the upper limit to the cross section is $4 \times 10^{-7}$.
46  ACCOMANDO 2000 calculate the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of minimal $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. The limit is relaxed by at least an order of magnitude when models with nonuniversal scalar masses are considered. A subset of the authors in ARNOWITT 2002 updated the limit to $<9 \times 10^{-8}$ (tan $\beta $ $<55$).
47  BERNABEI 2000 search for annual modulation of the WIMP signal. The data favor the hypothesis of annual modulation at 4$\sigma $ and are consistent, for a particular model framework quoted there, with ${\mathit m}_{{{\mathit X}^{0}}}=44$ ${}^{+12}_{-9}$ GeV and a spin-independent ${{\mathit X}^{0}}$-proton cross section of ($5.4$ $\pm1.0$) $ \times 10^{-6}~$pb. See also BERNABEI 2001 and BERNABEI 2000C.
48  FENG 2000 calculate the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry with a particular emphasis on focus point models. At tan $\beta $=50, the range is $8 \times 10^{-8} - 4 \times 10^{-7}$.
References