• • • We do not use the following data for averages, fits, limits, etc. • • • |
$<2.5 \times 10^{-8}$ |
90 |
1 |
|
XMAS |
$<3.9 \times 10^{-9}$ |
90 |
2 |
|
DEAP |
$<2 \times 10^{-8}$ |
90 |
3 |
|
PICO |
$<2.25 \times 10^{-6}$ |
90 |
4 |
|
C100 |
$<1.14 \times 10^{-8}$ |
90 |
5 |
|
DS50 |
$<1.6 \times 10^{-8}$ |
90 |
6 |
|
CDMS |
$<9 \times 10^{-11}$ |
90 |
7 |
|
XE1T |
$<1.8 \times 10^{-10}$ |
90 |
8 |
|
LUX |
$<1.4 \times 10^{-10}$ |
90 |
9 |
|
PNDX |
$<1.5 \times 10^{-9}$ |
90 |
10 |
|
X100 |
$<1.5 \times 10^{-9}$ |
90 |
11 |
|
LUX |
$10^{-11} - 10^{-7}$ |
95 |
12 |
|
THEO |
$<4.6 \times 10^{-6}$ |
90 |
13 |
|
SMPL |
$10^{-11} - 10^{-8}$ |
95 |
14 |
|
THEO |
$<2.2 \times 10^{-6}$ |
90 |
15 |
|
CDMS |
$<5 \times 10^{-8}$ |
90 |
16 |
|
ZEP3 |
$1.6 \times 10^{-6}; 3.7 \times 10^{-5}$ |
|
17 |
|
CRES |
$3 \times 10^{-12} \text{ to 3 }\times 10^{-9}$ |
95 |
18 |
|
THEO |
$<1.6 \times 10^{-7}$ |
|
19 |
|
COUP |
$<2.3 \times 10^{-7}$ |
90 |
20 |
|
KIMS |
$<3.3 \times 10^{-8}$ |
90 |
21 |
|
|
$<4.4 \times 10^{-8}$ |
90 |
22 |
|
EDE2 |
$<1 \times 10^{-7}$ |
90 |
23 |
|
XE10 |
$<1 \times 10^{-6}$ |
90 |
|
|
WARP |
$<7.5 \times 10^{-7}$ |
90 |
24 |
|
ZEP2 |
$<2 \times 10^{-7}$ |
|
25 |
|
CDMS |
$<90 \times 10^{-7}$ |
|
|
|
NAIA |
$<12 \times 10^{-7}$ |
|
26 |
|
ZEPL |
$<14 \times 10^{-7}$ |
|
|
|
EDEL |
$<4 \times 10^{-7}$ |
|
27 |
|
CDMS |
$2 \times 10^{-11} \text{ to 1.5 }\times 10^{-7}$ |
95 |
28 |
|
THEO |
$2 \times 10^{-11} \text{ to 8 }\times 10^{-6}$ |
|
29, 30 |
|
THEO |
$<5 \times 10^{-8}$ |
|
31 |
|
THEO |
$<2 \times 10^{-5}$ |
|
32 |
|
NAIA |
$<3 \times 10^{-6}$ |
|
33 |
|
CDMS |
$2 \times 10^{-13} \text{ to 2 }\times 10^{-7}$ |
|
34 |
|
THEO |
$<1.4 \times 10^{-5}$ |
|
35 |
|
HDMS |
$<6 \times 10^{-6}$ |
|
36 |
|
CDMS |
$1 \times 10^{-12} \text{ to 7 }\times 10^{-6}$ |
|
29 |
|
THEO |
$<3 \times 10^{-5}$ |
|
37 |
|
CSME |
$<1 \times 10^{-5}$ |
|
38 |
|
IGEX |
$<1 \times 10^{-6}$ |
|
|
|
THEO |
$<3 \times 10^{-5}$ |
|
39 |
|
HDMS |
$<7 \times 10^{-6}$ |
|
40 |
|
THEO |
$<1 \times 10^{-8}$ |
|
41 |
|
THEO |
$5 \times 10^{-10} \text{ to 1.5 }\times 10^{-8}$ |
|
42 |
|
THEO |
$<4 \times 10^{-6}$ |
|
41 |
|
THEO |
$2 \times 10^{-10} \text{ to 1 }\times 10^{-7}$ |
|
41 |
|
THEO |
$<3 \times 10^{-6}$ |
|
|
|
CDMS |
$<6 \times 10^{-7}$ |
|
43 |
|
THEO |
|
|
44 |
|
DAMA |
$2.5 \times 10^{-9} \text{ to 3.5 }\times 10^{-8}$ |
|
45 |
|
THEO |
$<1.5 \times 10^{-5}$ |
|
|
|
IGEX |
$<4 \times 10^{-5}$ |
|
|
|
UKDM |
$<7 \times 10^{-6}$ |
|
|
|
HDMO |
$<7 \times 10^{-6}$ |
|
|
|
DAMA |
1
The strongest upper limit is $2.2 \times 10^{-8}$ pb at 60 GeV.
|
2
This updates AMAUDRUZ 2018 .
|
3
This updates AMOLE 2016 .
|
4
The strongest limit is $2.05 \times 10^{-6}$ at m = 60 GeV.
|
5
The strongest limit is $1.09 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 126 GeV. This updates AGNES 2015 .
|
6
The strongest limit is $1.0 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 46 GeV. This updates AGNESE 2015B.
|
7
Based on 278.8 days of data collection. The strongest limit is $4.1 \times 10^{-11}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 30 GeV. This updates APRILE 2017G.
|
8
AKERIB 2017 . The strongest limit is $1.1 \times 10^{-10}$ pb at 50 GeV. This updates AKERIB 2016 .
|
9
The strongest limit is $8.6 \times 10^{-11}$ pb at 40 GeV. This updates TAN 2016B.
|
10
The strongest limit is $1.1 \times 10^{-9}$ pb at 50 GeV. This updates APRILE 2012 .
|
11
The strongest upper limit is $7.6 \times 10^{-10}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 33 GeV.
|
12
Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 20 fb${}^{-1}$ 8 TeV and the 5 fb${}^{-1}$ 7 TeV LHC data and the LUX data.
|
13
The strongest limit is $3.6 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV. Felizardo 2014 updates Felizardo 2012.
|
14
Predictions for the spin-independent elastic cross section based on a Bayesian approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 20 fb${}^{-1}$ LHC data and LUX.
|
15
AGNESE 2013 presents 90$\%$ CL limits on the elastic cross section for masses in the range $7 - 100$ GeV using the ${}^{}\mathrm {Si}$ based detector. The strongest upper limit is $1.8 \times 10^{-6}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 50 GeV. This limit is improved to $7 \times 10^{-7}$ pb in AGNESE 2013A.
|
16
This result updates LEBEDENKO 2009 . The strongest limit is $3.9 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 52 GeV.
|
17
ANGLOHER 2012 presents results of 730 kg days from the CRESST-II dark matter detector. They find two maxima in the likelihood function corresponding to best fit WIMP masses of 25.3 and 11.6 GeV with elastic cross sections of $1.6 \times 10^{-6}$ and $3.7 \times 10^{-5}$ pb respectively, see their Table 4. The statistical significance is more than 4$\sigma $. ANGLOHER 2012 updates ANGLOHER 2009
|
18
Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 5 fb${}^{-1}$ LHC data and XENON100.
|
19
The strongest limit is $1.4 \times 10^{-7}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 60 GeV.
|
20
This result updates LEE 2007A. The strongest limit is $2.1 \times 10^{-7}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 70 GeV.
|
21
AHMED 2011A gives combined results from CDMS and EDELWEISS. The strongest limit is at ${\mathit m}_{{{\mathit \chi}}}$ = 90 GeV.
|
22
ARMENGAUD 2011 updates result of ARMENGAUD 2010 . Strongest limit at ${\mathit m}_{{{\mathit \chi}}}$ = 85$~$GeV.
|
23
The strongest upper limit is $5.1 \times 10^{-8}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV. The values quoted here are based on the analysis performed in ANGLE 2008 with the update from SORENSEN 2009 .
|
24
The strongest upper limit is $6.6 \times 10^{-7}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 65 GeV.
|
25
AKERIB 2006A updates the results of AKERIB 2005 . The strongest upper limit is $1.6 \times 10^{-7}~$pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\approx{}$ 60 GeV.
|
26
The strongest upper limit is also close to $1.0 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 70 GeV. BENOIT 2006 claim that the discrimination power of ZEPLIN-I measurement (ALNER 2005A) is not reliable enough to obtain a limit better than $1 \times 10^{-3}$ pb. However, SMITH 2006 do not agree with the criticisms of BENOIT 2006 .
|
27
AKERIB 2004 is incompatible with BERNABEI 2000 most likely value, under the assumption of standard WIMP-halo interactions. The strongest upper limit is $4 \times 10^{-7}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$60 GeV.
|
28
Predictions for the spin-independent elastic cross section in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
|
29
KIM 2002 and ELLIS 2004 calculate the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses.
|
30
In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes $2 \times 10^{-6}$ ($2 \times 10^{-11}$ when constraint from the BNL $\mathit g−$2 experiment are included), see ELLIS 2003E. ELLIS 2005 display the sensitivity of the elastic scattering cross section to the ${{\mathit \pi}}$-Nucleon ${{\mathit \Sigma}}$ term.
|
31
PIERCE 2004A calculates the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in the framework of models with very heavy scalar masses. See Fig. 2 of the paper.
|
32
The strongest upper limit is $1.8 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\approx{}$80 GeV.
|
33
Under the assumption of standard WIMP-halo interactions, Akerib 03 is incompatible with BERNABEI 2000 most likely value at the 99.98$\%$ CL. See Fig. 4.
|
34
BAER 2003A calculates the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in several models including the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
|
35
The strongest upper limit is $7 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV.
|
36
ABRAMS 2002 is incompatible with the DAMA most likely value at the 99.9$\%$ CL. The strongest upper limit is $3 \times 10^{-6}~$pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV.
|
37
The strongest upper limit is $2 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$40 GeV.
|
38
The strongest upper limit is $7 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$46 GeV.
|
39
The strongest upper limit is $1.8 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$32 GeV
|
40
BOTTINO 2001 calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of the following supersymmetric models: $\mathit N$=1 supergravity with the radiative breaking of the electroweak gauge symmetry, $\mathit N$=1 supergravity with nonuniversal scalar masses and an effective MSSM model at the electroweak scale.
|
41
Calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
|
42
ELLIS 2001C calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. ELLIS 2002B find a range $2 \times 10^{-8} - 1.5 \times 10^{-7}$ at tan $\beta $=50. In models with nonuniversal Higgs masses, the upper limit to the cross section is $4 \times 10^{-7}$.
|
43
ACCOMANDO 2000 calculate the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of minimal $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. The limit is relaxed by at least an order of magnitude when models with nonuniversal scalar masses are considered. A subset of the authors in ARNOWITT 2002 updated the limit to $<9 \times 10^{-8}$ (tan $\beta $ $<55$).
|
44
BERNABEI 2000 search for annual modulation of the WIMP signal. The data favor the hypothesis of annual modulation at 4$\sigma $ and are consistent, for a particular model framework quoted there, with ${\mathit m}_{{{\mathit X}^{0}}}=44$ ${}^{+12}_{-9}$ GeV and a spin-independent ${{\mathit X}^{0}}$-proton cross section of ($5.4$ $\pm1.0$) $ \times 10^{-6}~$pb. See also BERNABEI 2001 and BERNABEI 2000C.
|
45
FENG 2000 calculate the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry with a particular emphasis on focus point models. At tan $\beta $=50, the range is $8 \times 10^{-8} - 4 \times 10^{-7}$.
|