Heavy ${{\widetilde{\mathit g}}}$ (Gluino) mass limit

For ${\mathit m}_{{{\widetilde{\mathit g}}}}$ $>$ 60$-$70 GeV, it is expected that gluinos would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included.
Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 2014 edition: K. Olive, $\mathit et~al.$ (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

R-parity conserving heavy ${{\widetilde{\mathit g}}}$ (Gluino) mass limit

INSPIRE   PDGID:
S046GNO
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$> 2200$ 95 1
AAD
2023AB
ATLS ${}\geq{}$1 ${{\mathit \gamma}}$ + jets + $\not E_T$, GGM-like, Tglu4D, ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ NLSP, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $>$ 300 GeV
$> 2200$ 95 1
AAD
2023AB
ATLS ${}\geq{}$1 ${{\mathit \gamma}}$ + jets + $\not E_T$, GGM-like, Tglu4G, ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ NLSP, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $>$ 350 GeV
$> 2250$ 95 2
AAD
2023AE
ATLS 2 SFOS ${{\mathit \ell}}$, jets, $\not E_T$, Tglu1G, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1950$ 95 3
AAD
2023AE
ATLS 2 SFOS ${{\mathit \ell}}$, jets, $\not E_T$, Tglu1H, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, , ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 2440$ 95 4
AAD
2023AL
ATLS At least 3 ${{\mathit b}}$-tagged jets, 0 or 1 lepton, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$> 2350$ 95 4
AAD
2023AL
ATLS At least 3 ${{\mathit b}}$-tagged jets, 0 or 1 lepton, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$> 2050$ 95 5
AAD
2023AL
ATLS At least 3 ${{\mathit b}}$-tagged jets, 0 or 1 lepton, Tglu3E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}–{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 2 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$> 2320$ 95 6
HAYRAPETYAN
2023E
CMS ${{\mathit \gamma}}$ + jets + $\not E_T$, Tglu4E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1700 GeV
$> 2375$ 95 6
HAYRAPETYAN
2023E
CMS ${{\mathit \gamma}}$ + jets + $\not E_T$, Tglu4D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1700 GeV
$> 2260$ 95 6
HAYRAPETYAN
2023E
CMS ${{\mathit \gamma}}$ + jets + $\not E_T$, Tglu4F, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1700 GeV
$> 2120$ 95 7
TUMASYAN
2023AY
CMS ${{\mathit \ell}^{\pm}}$ + ${}\geq{}$ 6 jets + ${}\geq{}$ 1 ${{\mathit b}}$-jet, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 2050$ 95 7
TUMASYAN
2023AY
CMS ${{\mathit \ell}^{\pm}}$ + ${}\geq{}$ 5 jets, 0 ${{\mathit b}}$-jets, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 0.5(${\mathit m}_{{{\widetilde{\mathit g}}}}$+ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)
$>2200$ 95 8
AAD
2022U
ATLS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ , ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}^{\pm}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}^{\pm}}}$ = 1000 GeV, $\tau ({{\widetilde{\mathit \chi}}^{\pm}}$) = 1 ns
$> 2330$ 95 9
TUMASYAN
2022V
CMS 3 or 4 ${{\mathit b}}$-tagged jets or 2 large-radius jets, $\not E_T$; Tglu1I; ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$> 2200$ 95 10
AAD
2021AK
ATLS ${{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV
$\text{none 1300 - 2050}$ 95 10
AAD
2021AK
ATLS ${{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 1000 GeV
$\bf{> 2300}$ 95 11
AAD
2021L
ATLS jets + $\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 200 GeV
$> 3000$ 95 11
AAD
2021L
ATLS jets + $\not E_T$, combined ${{\widetilde{\mathit g}}}{{\widetilde{\mathit g}}}$, ${{\widetilde{\mathit g}}}{{\widetilde{\mathit q}}}$, ${{\widetilde{\mathit q}}}{{\widetilde{\mathit q}}}$ production, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${{\widetilde{\mathit q}}}$ $\rightarrow$ ${{\mathit q}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit q}}}}$ = ${\mathit m}_{{{\widetilde{\mathit g}}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 2200$ 95 11
AAD
2021L
ATLS jets + $\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1400$ 95 12
AAD
2021X
ATLS jets in empty bunch crossings, Tglu1A, long-lived R-hadron, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV, $10^{-5}$ s $<$ ${\mathit \tau}_{\mathrm {R-hadron}}$ $<$ $10^{3}$ s
$> 870$ 95 12
AAD
2021X
ATLS jets in empty bunch crossings, Tglu1A, long-lived R-hadron, ${\mathit m}_{{{\widetilde{\mathit g}}}}–{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV, $10^{-5}$ s $<$ ${\mathit \tau}_{\mathrm {R-hadron}}$ $<$ $10^{3}$ s
$> 2260$ 95 13
SIRUNYAN
2021AD
CMS jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 1050 GeV
$> 2150$ 95 13
SIRUNYAN
2021AD
CMS jets + $\not E_T$, Tglu3C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 600 GeV, ${\mathit m}_{{{\widetilde{\mathit t}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 20 GeV
$> 2250$ 95 13
SIRUNYAN
2021AD
CMS jets + $\not E_T$, Tglu3D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 700 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 5 GeV
$> 1870$ 95 14
SIRUNYAN
2021M
CMS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$ + $\not E_T$, Tglu4C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1100 GeV
$> 1980$ 95 15
AAD
2020AL
ATLS 8 or more jets + $\not E_T$, Tglu1E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1820$ 95 15
AAD
2020AL
ATLS 8 or more jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1600$ 95 16
AAD
2020V
ATLS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ + jets, Tglu1E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1975$ 95 17
SIRUNYAN
2020B
CMS ${}\geq{}1{{\mathit \gamma}}$ + $\not E_T$, Tglu4A, BR( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$)=0.5, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $\simeq{}{\mathit m}_{{{\widetilde{\mathit g}}}}$
$> 1920$ 95 18
SIRUNYAN
2020BJ
CMS jets+$\not E_T$, Tglu1H, ${\mathit m}_{{{\widetilde{\mathit g}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = 50 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$> 2150$ 95 19
SIRUNYAN
2020E
CMS 1${{\mathit \ell}}$+jets, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$700 GeV
$> 2050$ 95 19
SIRUNYAN
2020E
CMS 1${{\mathit \ell}}$+jets, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$1100GeV
$> 1650$ 95 19
SIRUNYAN
2020E
CMS 1${{\mathit \ell}}$ + jets, Tglu3C, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$= 175 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 1150 GeV
$> 1700$ 95 20
SIRUNYAN
2020T
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1610$ 95 20
SIRUNYAN
2020T
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$= 175 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1300$ 95 20
SIRUNYAN
2020T
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets, Tglu3C, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$= 20 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1500$ 95 20
SIRUNYAN
2020T
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets, Tglu3D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 5 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1350$ 95 20
SIRUNYAN
2020T
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets, Tglu1C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1250$ 95 20
SIRUNYAN
2020T
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets, Tglu1C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$= ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$+20 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=0 GeV
$> 1425$ 95 20
SIRUNYAN
2020T
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1425$ 95 20
SIRUNYAN
2020T
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 20 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 2000$ 95 21
AABOUD
2019I
ATL ${}\geq{}$2 jets + 1 or 2 ${{\mathit \tau}}$ + $\not E_T$, Tglu1F, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1860$ 95 22
SIRUNYAN
2019AG
CMS 2${{\mathit \gamma}}$ +$\not E_T$, Tglu4B, 500 GeV $<{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$ 1500 GeV
$>1920$ 95 23
SIRUNYAN
2019AU
CMS ${{\mathit \gamma}}$ +jets + ${{\mathit b}}$-jets + $\not E_T$, Tglu4D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 127 GeV
$> 1950$ 95 23
SIRUNYAN
2019AU
CMS ${{\mathit \gamma}}$ + jets + ${{\mathit b}}$-jets + $\not E_T$, Tglu4E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$> 1800$ 95 23
SIRUNYAN
2019AU
CMS ${{\mathit \gamma}}$ + jets + ${{\mathit b}}$-jets + $\not E_T$, Tglu4F, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$> 2090$ 95 23
SIRUNYAN
2019AU
CMS ${{\mathit \gamma}}$ + jets + ${{\mathit b}}$-jets + $\not E_T$, Tglu4D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1200 GeV
$> 2120$ 95 23
SIRUNYAN
2019AU
CMS ${{\mathit \gamma}}$ + jets + ${{\mathit b}}$-jets + $\not E_T$, Tglu4E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1200 GeV
$> 1970$ 95 23
SIRUNYAN
2019AU
CMS ${{\mathit \gamma}}$ + jets + ${{\mathit b}}$-jets + $\not E_T$, Tglu4F, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1200 GeV
$> 1700$ 95 24
SIRUNYAN
2019CE
CMS 2 jets, Stealth SUSY, Tglu1A and ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\widetilde{\mathit S}}}{{\mathit \gamma}}$ ( ${{\widetilde{\mathit S}}}$ $\rightarrow$ ${{\mathit S}}{{\widetilde{\mathit G}}}$), ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 200 GeV
$> 2000$ 95 25
SIRUNYAN
2019CH
CMS jets+$\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$\bf{> 2030}$ 95 25
SIRUNYAN
2019CH
CMS jets+$\not E_T$, Tglu1C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}={\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$= 0.5(${\mathit m}_{{{\widetilde{\mathit g}}}}+{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$), ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 2270$ 95 25
SIRUNYAN
2019CH
CMS jets+$\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 2180$ 95 25
SIRUNYAN
2019CH
CMS jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1750$ 95 26
SIRUNYAN
2019K
CMS ${{\mathit \gamma}}+{{\mathit \ell}}+\not E_T$, Tglu4A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1500 GeV
$> 2000$ 95 27
SIRUNYAN
2019S
CMS 1 or 2 ${{\mathit \ell}}$ + jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 700 GeV
$> 1900$ 95 27
SIRUNYAN
2019S
CMS 1 or 2 ${{\mathit \ell}}$ + jets + $\not E_T$, Tglu3C, 150 GeV $<$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 950 GeV
$> 1970$ 95 28
AABOUD
2018AR
ATLS jets+${}\geq{}3{{\mathit b}}$-jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 300 GeV
$> 1920$ 95 29
AABOUD
2018AR
ATLS jets+${}\geq{}3{{\mathit b}}$-jets+$\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 600 GeV
$> 1650$ 95 30
AABOUD
2018AS
ATLS ${}\geq{}$4 jets and disappearing tracks from ${{\widetilde{\mathit \chi}}^{\pm}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\mathit \pi}^{\pm}}$, modified Tglu1A or Tglu1B, ${{\widetilde{\mathit \chi}}^{\pm}}$ lifetime 0.2 ns, ${\mathit m}_{{{\widetilde{\mathit \chi}}^{\pm}}}$ = 460 GeV
$> 1850$ 95 31
AABOUD
2018BJ
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$ + jets + $\not E_T$, Tglu1G, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1650$ 95 32
AABOUD
2018BJ
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$ + jets + $\not E_T$, Tglu1H, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 2150$ 95 33
AABOUD
2018U
ATLS 2 ${{\mathit \gamma}}$ + $\not E_T$, GGM, Tglu4B, any NLSP mass
$> 1600$ 95 34
AABOUD
2018U
ATLS ${{\mathit \gamma}}$ + jets + $\not E_T$, GGM higgsino-bino, mix of Tglu4B and Tglu4C, any NLSP mass
$> 2030$ 95 35
AABOUD
2018V
ATLS jets+$\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1980$ 95 36
AABOUD
2018V
ATLS jets+$\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}=0.5({\mathit m}_{{{\widetilde{\mathit g}}}}+{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$), ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1750$ 95 37
AABOUD
2018V
ATLS jets+$\not E_T$, Tglu1C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV, any ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ $>$ 100 GeV
$> 2000$ 95 38
SIRUNYAN
2018AA
CMS ${}\geq{}1{{\mathit \gamma}}$ + $\not E_T$, Tglu4A
$> 2100$ 95 38
SIRUNYAN
2018AA
CMS ${}\geq{}1{{\mathit \gamma}}$ + $\not E_T$, Tglu4B
$> 1800$ 95 39
SIRUNYAN
2018AC
CMS 1${{\mathit \ell}}$+jets, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$650 GeV
$> 1700$ 95 39
SIRUNYAN
2018AC
CMS 1${{\mathit \ell}}$+jets, Tglu3A,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$1040 GeV
$> 1900$ 95 39
SIRUNYAN
2018AC
CMS 1${{\mathit \ell}}$ + jets, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 300 GeV
$> 1250$ 95 39
SIRUNYAN
2018AC
CMS 1${{\mathit \ell}}$ + jets, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 950 GeV
$> 1610$ 95 40
SIRUNYAN
2018AL
CMS ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1160$ 95 40
SIRUNYAN
2018AL
CMS ${}\geq{}3{{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu1C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1500$ 95 41
SIRUNYAN
2018AR
CMS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$ + jets + $\not E_T$, GMSB, Tglu4C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1770$ 95 41
SIRUNYAN
2018AR
CMS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$ + jets + $\not E_T$, GMSB, Tglu4C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1400 GeV
$> 1625$ 95 42
SIRUNYAN
2018AY
CMS jets+$\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1825$ 95 42
SIRUNYAN
2018AY
CMS jets+$\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1625$ 95 42
SIRUNYAN
2018AY
CMS jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 2040$ 95 43
SIRUNYAN
2018D
CMS top quark (hadronically decaying) + jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1930$ 95 43
SIRUNYAN
2018D
CMS top quark (hadronically decaying) + jets + $\not E_T$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 175 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 200 GeV
$> 1690$ 95 43
SIRUNYAN
2018D
CMS top quark (hadronically decaying) + jets + $\not E_T$, Tglu3C, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 20 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1990$ 95 43
SIRUNYAN
2018D
CMS top quark (hadronically decaying) + jets + $\not E_T$, Tglu3E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 5 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 2010$ 95 44
SIRUNYAN
2018M
CMS ${}\geq{}$1 ${{\mathit H}}$ ($\rightarrow$ ${{\mathit b}}{{\mathit b}}$) + $\not E_T$, Tglu1I
$> 1825$ 95 44
SIRUNYAN
2018M
CMS ${}\geq{}$1 ${{\mathit H}}$ ($\rightarrow$ ${{\mathit b}}{{\mathit b}}$) + $\not E_T$, Tglu1J
$>1750$ 95 45
AABOUD
2017AJ
ATLS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ $/$ 3 ${{\mathit \ell}}$ + jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1570$ 95 46
AABOUD
2017AJ
ATLS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ $/$ 3 ${{\mathit \ell}}$ + jets + $\not E_T$, Tglu1E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1860$ 95 47
AABOUD
2017AJ
ATLS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ $/$ 3 ${{\mathit \ell}}$ + jets + $\not E_T$, Tglu1G, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 200 GeV
$>2100$ 95 48
AABOUD
2017AR
ATLS 1${{\mathit \ell}}$+jets+$\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1740$ 95 49
AABOUD
2017AR
ATLS 1${{\mathit \ell}}$+jets+$\not E_T$, Tglu1E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1800$ 95 50
AABOUD
2017AY
ATLS jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 5 GeV
$>1800$ 95 51
AABOUD
2017AZ
ATLS ${}\geq{}$7 jets+$\not E_T$, large R-jets and/or ${{\mathit b}}$-jets, Tglu1E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1540$ 95 52
AABOUD
2017AZ
ATLS ${}\geq{}$7 jets+$\not E_T$, large R-jets and/or ${{\mathit b}}$-jets, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1340$ 95 53
AABOUD
2017N
ATLS 2 same-flavor, opposite-sign ${{\mathit \ell}}$ + jets + $\not E_T$, Tglu1H, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1310$ 95 54
AABOUD
2017N
ATLS 2 same-flavor, opposite-sign ${{\mathit \ell}}$ + jets + $\not E_T$, Tglu1H, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}+{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV
$> 1700$ 95 55
AABOUD
2017N
ATLS 2 same-flavor, opposite-sign ${{\mathit \ell}}$ + jets + $\not E_T$, Tglu1G, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $\sim{}$ 1 GeV
$> 1400$ 95 56
KHACHATRYAN
2017
CMS jets+$\not E_T$,Tglu1A,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=200GeV
$> 1650$ 95 56
KHACHATRYAN
2017
CMS jets+$\not E_T$,Tglu2A,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=200 GeV
$> 1600$ 95 56
KHACHATRYAN
2017
CMS jets+$\not E_T$,Tglu3A,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=200GeV
$> 1550$ 95 57
KHACHATRYAN
2017AD
CMS jets+${{\mathit b}}$-jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1450$ 95 58
KHACHATRYAN
2017AD
CMS jets+${{\mathit b}}$-jets+$\not E_T$, Tglu3C, 200 $<$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV
$>1570$ 95 59
KHACHATRYAN
2017AS
CMS 1${{\mathit \ell}}$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 600 GeV
$>1500$ 95 59
KHACHATRYAN
2017AS
CMS 1${{\mathit \ell}}$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 775 GeV
$>1400$ 95 59
KHACHATRYAN
2017AS
CMS 1${{\mathit \ell}}$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 725 GeV
$\text{none 1050 - 1350}$ 95 59
KHACHATRYAN
2017AS
CMS 1${{\mathit \ell}}$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 850 GeV
$> 1175$ 95 60
KHACHATRYAN
2017AW
CMS ${}\geq{}3{{\mathit \ell}^{\pm}}$, 2 jets, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 825$ 95 60
KHACHATRYAN
2017AW
CMS ${}\geq{}3{{\mathit \ell}^{\pm}}$, 2 jets, Tglu1C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1350$ 95 61
KHACHATRYAN
2017P
CMS 1 or more jets+$\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1545$ 95 61
KHACHATRYAN
2017P
CMS 1 or more jets+$\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1120$ 95 61
KHACHATRYAN
2017P
CMS 1 or more jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1300$ 95 61
KHACHATRYAN
2017P
CMS 1 or more jets+$\not E_T$, Tglu3D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 5 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$>780$ 95 61
KHACHATRYAN
2017P
CMS 1 or more jets+$\not E_T$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 175 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 50 GeV
$>790$ 95 61
KHACHATRYAN
2017P
CMS 1 or more jets+$\not E_T$, Tglu3C, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 20 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1650$ 95 62
KHACHATRYAN
2017V
CMS 2 ${{\mathit \gamma}}$ + $\not E_T$, GGM, Tglu4B, any NLSP mass
$> 1900$ 95 63
SIRUNYAN
2017AF
CMS 1${{\mathit \ell}}$+jets+${{\mathit b}}$-jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1600$ 95 63
SIRUNYAN
2017AF
CMS 1${{\mathit \ell}}$+jets+${{\mathit b}}$-jets+$\not E_T$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 175 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 50 GeV
$> 1800$ 95 64
SIRUNYAN
2017AY
CMS ${{\mathit \gamma}}$ + jets+$\not E_T$, Tglu4B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1600$ 95 64
SIRUNYAN
2017AY
CMS ${{\mathit \gamma}}$ + jets+$\not E_T$, Tglu4A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1860$ 95 65
SIRUNYAN
2017AZ
CMS ${}\geq{}$1 jets + $\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 2025$ 95 65
SIRUNYAN
2017AZ
CMS ${}\geq{}$1 jets+$\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1900$ 95 65
SIRUNYAN
2017AZ
CMS ${}\geq{}$1 jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1825$ 95 66
SIRUNYAN
2017P
CMS jets+$\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1950$ 95 66
SIRUNYAN
2017P
CMS jets+$\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1960$ 95 66
SIRUNYAN
2017P
CMS jets+$\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1800$ 95 66
SIRUNYAN
2017P
CMS jets+$\not E_T$, Tglu1C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}+{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1870$ 95 66
SIRUNYAN
2017P
CMS jets+$\not E_T$, Tglu3D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 5 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1000 GeV
$> 1520$ 95 67
SIRUNYAN
2017S
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1200$ 95 67
SIRUNYAN
2017S
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu3D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 5 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1370$ 95 67
SIRUNYAN
2017S
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 175 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 50 GeV
$> 1180$ 95 67
SIRUNYAN
2017S
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu3C, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 20 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1280$ 95 67
SIRUNYAN
2017S
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1300$ 95 67
SIRUNYAN
2017S
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ + jets + $\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 20 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1570$ 95 68
AABOUD
2016AC
ATLS ${}\geq{}$2 jets + 1 or 2 ${{\mathit \tau}}$ + $\not E_T$, Tglu1F, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1460$ 95 69
AABOUD
2016J
ATLS 1 ${{\mathit \ell}^{\pm}}$ + ${}\geq{}$4 jets + $\not E_T$, Tglu3C, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 5 GeV
$> 1650$ 95 70
AABOUD
2016M
ATLS 2 ${{\mathit \gamma}}$ + $\not E_T$, Tglu1D, any NLSP mass
$> 1510$ 95 71
AABOUD
2016N
ATLS ${}\geq{}$4 jets + $\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1500$ 95 72
AABOUD
2016N
ATLS ${}\geq{}$4 jets + $\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}+{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=200GeV
$> 1780$ 95 73
AAD
2016AD
ATLS 0${{\mathit \ell}}$, ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 800 GeV
$> 1760$ 95 74
AAD
2016AD
ATLS 1${{\mathit \ell}}$, ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 700 GeV
$> 1300$ 95 75
AAD
2016BB
ATLS 2 same-sign/3${{\mathit \ell}}$ + jets + $\not E_T$, Tglu1D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$ 600 GeV
$> 1100$ 95 75
AAD
2016BB
ATLS 2 same-sign/3${{\mathit \ell}}$ + jets + $\not E_T$, Tglu1E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$ 300 GeV
$> 1200$ 95 75
AAD
2016BB
ATLS 2 same-sign /3${{\mathit \ell}}$ + jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 600 GeV
$> 1600$ 76
AAD
2016BG
ATLS 1${{\mathit \ell}}$, ${}\geq{}$4 jets, $\not E_T$, Tglu1B, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$= (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$= 100 GeV
$>1400$ 95 77
AAD
2016V
ATLS ${}\geq{}$7 to ${}\geq{}$10 jets + $\not E_T$, Tglu1E, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 200 GeV
$>1400$ 95 77
AAD
2016V
ATLS ${}\geq{}$7 to ${}\geq{}$10 jets + $\not E_T$, pMSSM ${{\mathit M}_{{{1}}}}$ = 60 GeV, ${{\mathit M}_{{{2}}}}$ = 3 TeV, tan${{\mathit \beta}}$=10, ${{\mathit \mu}}$ $<$ 0
$> 1100$ 95 78
KHACHATRYAN
2016AM
CMS boosted ${{\mathit W}}+{{\mathit b}}$, Tglu3C, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$80GeV,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$400GeV
$>700$ 95 78
KHACHATRYAN
2016AM
CMS boosted ${{\mathit W}}+{{\mathit b}}$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=175 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=0 GeV
$>1050$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 800 GeV
$>1300$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$,Tglu3A,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=0
$>1140$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 20 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>850$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}}}−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=20 GeV,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$700 GeV
$>950$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, Tglu3D, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 5 GeV
$>1100$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$,Tglu1B,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$= 0.5(${\mathit m}_{{{\widetilde{\mathit g}}}}+{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}),{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$400GeV
$> 830$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$,Tglu1B,${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$= 0.5(${\mathit m}_{{{\widetilde{\mathit g}}}}+{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}),{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}<$700GeV
$>1300$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = ${\mathit m}_{{{\mathit t}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>1050$ 95 79
KHACHATRYAN
2016BJ
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, Tglu3B, ${\mathit m}_{{{\widetilde{\mathit t}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = ${\mathit m}_{{{\mathit t}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 800 GeV
$>1725$ 95 80
KHACHATRYAN
2016BS
CMS jets + $\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>1750$ 95 80
KHACHATRYAN
2016BS
CMS jets + $\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>1550$ 95 80
KHACHATRYAN
2016BS
CMS jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$> 1280$ 95 81
KHACHATRYAN
2016BY
CMS opposite-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, Tglu4C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1000 GeV
$> 1030$ 95 81
KHACHATRYAN
2016BY
CMS opposite-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, Tglu4C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$>1440$ 95 82
KHACHATRYAN
2016V
CMS jets + $\not E_T$, Tglu1A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>1600$ 95 82
KHACHATRYAN
2016V
CMS jets + $\not E_T$, Tglu2A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>1550$ 95 82
KHACHATRYAN
2016V
CMS jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>1450$ 95 82
KHACHATRYAN
2016V
CMS jets + $\not E_T$, Tglu1C, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>820$ 95 83
AAD
2015BG
ATLS GGM, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\widetilde{\mathit q}}}{{\mathit Z}}{{\widetilde{\mathit G}}}$, tan ${{\mathit \beta}}$ = 30, ${{\mathit \mu}}$ $>$ 600 GeV
$>850$ 95 83
AAD
2015BG
ATLS GGM, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\widetilde{\mathit q}}}{{\mathit Z}}{{\widetilde{\mathit G}}}$, tan ${{\mathit \beta}}$ = 1.5, ${{\mathit \mu}}$ $>$ 450 GeV
$>1150$ 95 84
AAD
2015BV
ATLS general RPC ${{\widetilde{\mathit g}}}$ decays, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 100 GeV
$>700$ 95 85
AAD
2015BX
ATLS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit X}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, independent of ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$
$>1290$ 95 86
AAD
2015CA
ATLS ${}\geq{}$2 ${{\mathit \gamma}}$ + $\not E_T$, GGM, bino-like NLSP, any NLSP mass
$>1260$ 95 86
AAD
2015CA
ATLS ${}\geq{}$1 ${{\mathit \gamma}}$ + ${{\mathit b}}$-jets + $\not E_T$, GGM, higgsino-bino admix. NLSP and ${{\mathit \mu}}<$0, m(NLSP)$>$450 GeV
$>1140$ 95 86
AAD
2015CA
ATLS ${}\geq{}$1 ${{\mathit \gamma}}$ + jets + $\not E_T$, GGM, higgsino-bino admixture NLSP, all ${{\mathit \mu}}>$0
$> 1225$ 95 87
KHACHATRYAN
2015AF
CMS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$> 1300$ 95 87
KHACHATRYAN
2015AF
CMS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$> 1225$ 95 87
KHACHATRYAN
2015AF
CMS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>1550$ 95 87
KHACHATRYAN
2015AF
CMS CMSSM, tan ${{\mathit \beta}}$=30, ${\mathit m}_{{{\widetilde{\mathit g}}}}={\mathit m}_{{{\widetilde{\mathit q}}}}$, $\mathit A_{0}=−$2max(${\mathit m}_{\mathrm {0}},{\mathit m}_{\mathrm {1/2}}$), $\mu >$0
$>1150$ 95 87
KHACHATRYAN
2015AF
CMS CMSSM, tan ${{\mathit \beta}}$=30, $\mathit A_{0}=−$2max(${\mathit m}_{\mathrm {0}},{\mathit m}_{\mathrm {1/2}}$), $\mu >$0
$>1280$ 95 88
KHACHATRYAN
2015I
CMS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\widetilde{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0
$>1310$ 95 89
KHACHATRYAN
2015X
CMS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$>1175$ 95 89
KHACHATRYAN
2015X
CMS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$> 1330$ 95 90
AAD
2014AE
ATLS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 1700$ 95 90
AAD
2014AE
ATLS jets + $\not E_T$, mSUGRA/CMSSM, ${\mathit m}_{{{\widetilde{\mathit q}}}}$ = ${\mathit m}_{{{\widetilde{\mathit g}}}}$
$> 1090$ 95 91
AAD
2014AG
ATLS ${{\mathit \tau}}$ + jets + $\not E_T$, natural Gauge Mediation
$> 1600$ 95 91
AAD
2014AG
ATLS ${{\mathit \tau}}$ + jets + $\not E_T$, mGMSB, M$_{mess}$ = 250 GeV, ${{\mathit N}_{{{5}}}}$ = 3, ${{\mathit \mu}}$ $>$ 0, ${{\mathit C}}_{grav}$ = 1
$> 640$ 95 92
AAD
2014X
ATLS ${}\geq{}4{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}{{\widetilde{\mathit G}}}$, tan $\beta $ = 30, GGM
$> 1000$ 95 93
CHATRCHYAN
2014AH
CMS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 50 GeV
$> 1350$ 95 93
CHATRCHYAN
2014AH
CMS jets + $\not E_T$, CMSSM, ${\mathit m}_{{{\widetilde{\mathit g}}}}$ = ${\mathit m}_{{{\widetilde{\mathit q}}}}$
$> 1000$ 95 94
CHATRCHYAN
2014AH
CMS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 50 GeV
$> 1000$ 95 95
CHATRCHYAN
2014AH
CMS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 50 GeV
$> 1160$ 95 96
CHATRCHYAN
2014I
CMS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 100 GeV
$> 1130$ 95 96
CHATRCHYAN
2014I
CMS multijets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 100 GeV
$> 1210$ 95 96
CHATRCHYAN
2014I
CMS multijets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 100 GeV
$> 1260$ 95 97
CHATRCHYAN
2014N
CMS 1${{\mathit \ell}^{\pm}}$+ jets +${}\geq{}2{{\mathit b}}$-jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit \chi}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\mathit \chi}_{{{1}}}^{0}}}$=0 GeV, ${\mathit m}_{{{\widetilde{\mathit t}}}}>$ ${\mathit m}_{{{\widetilde{\mathit g}}}}$
98
CHATRCHYAN
2014R
CMS ${}\geq{}3{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit g}}}$ $/$ ${{\widetilde{\mathit q}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}{{\widetilde{\mathit G}}}$ simplified model, GMSB, slepton co-NLSP scenario
99
CHATRCHYAN
2014R
CMS ${}\geq{}3{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model
• • We do not use the following data for averages, fits, limits, etc. • •
$> 1500$ 95 100
AABOUD
2018BJ
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$ + jets + $\not E_T$, Tglu1H, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV, any ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$
$> 1770$ 95 101
AABOUD
2018V
ATLS jets+$\not E_T$, Tglu1C-like, 1/2 BR per decay mode, any ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 60 GeV
$>1600$ 95 102
AABOUD
2017AZ
ATLS ${}\geq{}$7 jets+$\not E_T$, large R-jets and/or ${{\mathit b}}$-jets, pMSSM, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 200 GeV
$>1600$ 95 103
KHACHATRYAN
2016AY
CMS 1${{\mathit \ell}^{\pm}}$ + jets + ${{\mathit b}}$-jets + $\not E_T$, Tglu3A, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV
$> 500$ 95 104
KHACHATRYAN
2016BT
CMS 19-parameter pMSSM model, global Bayesian analysis, flat prior
105
AAD
2015AB
ATLS ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit S}}}{{\mathit g}}$, c${{\mathit \tau}}$ = 1 m, ${{\widetilde{\mathit S}}}$ $\rightarrow$ ${{\mathit S}}{{\widetilde{\mathit G}}}$ and ${{\mathit S}}$ $\rightarrow$ ${{\mathit g}}{{\mathit g}}$, BR = 100$\%$
106
AAD
2015AI
ATLS ${{\mathit \ell}^{\pm}}$ + jets + $\not E_T$
$>1600$ 95 84
AAD
2015BV
ATLS pMSSM, M$_{1}$ = 60 GeV, ${\mathit m}_{{{\widetilde{\mathit q}}}}$ $<$ 1500 GeV
$>1280$ 95 84
AAD
2015BV
ATLS mSUGRA, ${\mathit m}_{\mathrm {0}}$ $>$ 2 TeV
$>1100$ 95 84
AAD
2015BV
ATLS via ${{\widetilde{\mathit \tau}}}$, natural GMSB, all ${\mathit m}_{{{\widetilde{\mathit \tau}}}}$
$>1330$ 95 84
AAD
2015BV
ATLS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$>1500$ 95 84
AAD
2015BV
ATLS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit q}}}{{\mathit q}}$, ${{\widetilde{\mathit q}}}$ $\rightarrow$ ${{\mathit q}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$>1650$ 95 84
AAD
2015BV
ATLS jets + $\not E_T$, ${\mathit m}_{{{\widetilde{\mathit g}}}}$ = ${\mathit m}_{{{\widetilde{\mathit q}}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV
$>850$ 95 84
AAD
2015BV
ATLS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit g}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 550 GeV
$>1270$ 95 84
AAD
2015BV
ATLS jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit W}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$>1150$ 95 84
AAD
2015BV
ATLS jets + ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit W}}{{\mathit Z}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$>1320$ 95 84
AAD
2015BV
ATLS jets + ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit g}}}$ decays via sleptons, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$>1220$ 95 84
AAD
2015BV
ATLS ${{\mathit \tau}}$, ${{\widetilde{\mathit q}}}$ decays via staus, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV
$>1310$ 95 84
AAD
2015BV
ATLS ${\mathit {\mathit b}}$-jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV
$>1220$ 95 84
AAD
2015BV
ATLS ${\mathit {\mathit b}}$-jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit t}}_{{{1}}}}{{\mathit t}}$ and ${{\widetilde{\mathit t}}_{{{1}}}}$ $\rightarrow$ ${{\mathit t}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\mathit T}_{{{1}}}}}$ $<$ 1000 GeV
$>1180$ 95 84
AAD
2015BV
ATLS ${\mathit {\mathit b}}$-jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit t}}_{{{1}}}}{{\mathit t}}$ and ${{\widetilde{\mathit t}}_{{{1}}}}$ $\rightarrow$ ${{\mathit b}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${\mathit m}_{{{\mathit T}_{{{1}}}}}$ $<$ 1000 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 60 GeV
$>1260$ 95 84
AAD
2015BV
ATLS ${\mathit {\mathit b}}$-jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit t}}_{{{1}}}}{{\mathit t}}$ and ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit c}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$
$>1200$ 95 84
AAD
2015BV
ATLS ${\mathit {\mathit b}}$-jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit b}}_{{{1}}}}{{\mathit b}}$ and ${{\widetilde{\mathit b}}_{{{1}}}}$ $\rightarrow$ ${{\mathit b}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit b}}_{{{1}}}}}$ $<$ 1000 GeV
$>1250$ 95 84
AAD
2015BV
ATLS ${\mathit {\mathit b}}$-jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV
$\text{none, 750 - 1250}$ 95 84
AAD
2015BV
ATLS ${\mathit {\mathit b}}$-jets, ${{\widetilde{\mathit g}}}$ decay via offshell ${{\widetilde{\mathit t}}_{{{1}}}}$ and ${{\widetilde{\mathit b}}_{{{1}}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 500 GeV
$>1100$ 95 107
AAD
2015CB
ATLS jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\widetilde{\mathit G}}}$, GGM, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 400 GeV and 3 $<$ c$\tau _{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 500 mm
$>1400$ 95 107
AAD
2015CB
ATLS jets or $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, Split SUSY, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV and 15 $<$ c$\tau $ $<$ 300 mm
$>1500$ 95 107
AAD
2015CB
ATLS $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, Split SUSY, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV and 20 $<$ c$\tau $ $<$ 250 mm
108
KHACHATRYAN
2015AD
CMS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$ + jets + $\not E_T$, GMSB, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit Z}}{{\widetilde{\mathit G}}}$
$>1300$ 95 109
KHACHATRYAN
2015AZ
CMS ${}\geq{}$2 ${{\mathit \gamma}}$, ${}\geq{}$1 jet, (Razor), bino-like NLSP, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 375 GeV
$>800$ 95 109
KHACHATRYAN
2015AZ
CMS ${}\geq{}$1 ${{\mathit \gamma}}$, ${}\geq{}$2 jet, wino-like NLSP, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 375 GeV
$> 1280$ 95 110
AAD
2014AX
ATLS ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, CMSSM
$> 1250$ 95 110
AAD
2014AX
ATLS ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit b}}_{{{1}}}}{{\mathit b}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${{\widetilde{\mathit b}}_{{{1}}}}$ $\rightarrow$ ${{\mathit b}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 60 GeV, ${\mathit m}_{{{\widetilde{\mathit b}}_{{{1}}}}}$ $<$ 900 GeV
$> 1190$ 95 110
AAD
2014AX
ATLS ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit t}}_{{{1}}}}{{\mathit t}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${{\widetilde{\mathit t}}_{{{1}}}}$ $\rightarrow$ ${{\mathit t}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 60 GeV, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}$ $<$ 1000 GeV
$> 1180$ 95 110
AAD
2014AX
ATLS ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit t}}_{{{1}}}}{{\mathit t}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${{\widetilde{\mathit t}}_{{{1}}}}$ $\rightarrow$ ${{\mathit b}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}=2{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=60 GeV, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}<$1000 GeV
$> 1250$ 95 110
AAD
2014AX
ATLS ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV
$> 1340$ 95 110
AAD
2014AX
ATLS ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV
$> 1300$ 95 110
AAD
2014AX
ATLS ${}\geq{}$3 ${{\mathit b}}$-jets + $\not E_T$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ simplified model, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit f}}{{\mathit f}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 2 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 300 GeV
$> 950$ 95 111
AAD
2014E
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$( ${{\mathit \ell}^{\mp}}$) + jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model
$> 1000$ 95 111
AAD
2014E
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$( ${{\mathit \ell}^{\mp}}$) + jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\widetilde{\mathit t}}_{{{1}}}}$ with ${{\widetilde{\mathit t}}_{{{1}}}}$ $\rightarrow$ ${{\mathit b}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}$ $<$ 200 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 118 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 60 GeV
$> 640$ 95 111
AAD
2014E
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$( ${{\mathit \ell}^{\mp}}$) + jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\widetilde{\mathit t}}_{{{1}}}}$ with ${{\widetilde{\mathit t}}_{{{1}}}}$ $\rightarrow$ ${{\mathit c}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 20 GeV
$> 860$ 95 111
AAD
2014E
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$( ${{\mathit \ell}^{\mp}}$) + jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{(*)\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 2 ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV
$> 1040$ 95 111
AAD
2014E
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$( ${{\mathit \ell}^{\mp}}$) + jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{(*)\pm}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}^{(*)}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 520 GeV
$> 1200$ 95 111
AAD
2014E
ATLS ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$( ${{\mathit \ell}^{\mp}}$) + jets, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $/$ ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \nu}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$( ${{\mathit \nu}}{{\mathit \nu}}$) ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model
$> 1050$ 95 112
CHATRCHYAN
2014H
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, massless ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$
$> 900$ 95 113
CHATRCHYAN
2014H
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 0.5 ${\mathit m}_{{{\widetilde{\mathit g}}}}$, massless ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$
$> 1050$ 95 114
CHATRCHYAN
2014H
CMS same-sign ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 300 GeV, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 50 GeV
1  AAD 2023AB searched in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for an excess of events with one photon, jets and $\not E_T$. No significant excess above the Standard Model predictions is observed. Limits are set on the mass of pair produced gluinos decaying to ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ followed by ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\widetilde{\mathit G}}}$ or ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit X}}{{\widetilde{\mathit G}}}$ with equal probability, see Figure 4. ${{\mathit X}}$ can be ${{\mathit Z}}$ (left figure) or ${{\mathit h}}$ (right figure).
2  AAD 2023AE searched in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with 2 ${{\mathit \ell}}$ with same flavour and opposite sign, plus jets and $\not E_T$, defining signal region with the dilepton invariant mass both on- and off-shell with respect to the ${{\mathit Z}}$ boson. No significant excess above the Standard Model predictions is observed. Limits are set on models of strong and electroweak production. In this case, limits are placed on the mass of pair-produced gluinos, assuming a scenario like in Tglu1G, see figure 16.
3  AAD 2023AE searched in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with 2 ${{\mathit \ell}}$ with same flavour and opposite sign, plus jets and $\not E_T$, defining signal region with the dilepton invariant mass both on- and off-shell with respect to the ${{\mathit Z}}$ boson. No significant excess above the Standard Model predictions is observed. Limits are set on models of strong and electroweak production. In this case, limits are placed on the gluino mass assuming gluino pair production, assuming a scenario like in Tglu1H, see figure 16.
4  AAD 2023AL searched in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with 0 or 1 lepton and at least three ${{\mathit b}}$-tagged jets. No significant excess above the Standard Model prediction is observed. Results are interpreted in terms of gluino pair production followed by the decay of gluinos into off-shell third generation squarks, yielding final states with top and bottom quarks, and missing transverse momentum from a ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ LSP. Limits are set on the mass of the gluino as a function of the ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ assuming B( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit t}}}{{\mathit t}}$) = 100$\%$ or B( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit b}}}{{\mathit b}}$) = 100$\%$, see figure 10.
5  AAD 2023AL searched in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with 0 or 1 lepton and at least three ${{\mathit b}}$-tagged jets. No significant excess above the Standard Model prediction is observed. Results are interpreted in terms of gluino pair production followed by the decay of gluinos into off-shell third generation squarks, yielding final states with top and bottom quarks, and missing transverse momentum from a ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ LSP. Limits are set on the mass of the gluino as a function of ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$, assuming B( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit t}}}{{\mathit t}}$) + B( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit b}}}{{\mathit b}}$) + B( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$) = 100$\%$, and ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}–{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 2 GeV, see figures $11 - 13$.
6  HAYRAPETYAN 2023E searched in 137 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for evidence of gluino, top squark and electroweakino pair production in events with at least one photon, multiple jets, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set in models for strong production, Tglu4D, Tglu4E, Tglu4F and Tstop13, see their figure 9. They also interpret the results in the models for electroweak production, shown in their figure 10. Tchi1n1A assumes wino-like ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ production, while Tchi1chi1A assumes higgsino-like cross sections and includes ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ and ${{\widetilde{\mathit \chi}}_{{{1,2}}}^{0}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ production. For ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ alone no mass point can be excluded in the model Tchi1chi1A, but in another model for ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ production, Tn1n2A.
7  TUMASYAN 2023AY searched in 138 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for evidence of gluino pair production in events with a single electron or muon and multiple hadronic jets. No significant excess above the Standard Model expectations is observed. Limits are set in the models Tglu3A and Tglu1B, see their figure 11. For Tglu1B, the chargino mass is set to ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 0.5 (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$).
8  AAD 2022U searched for the signature of disappearing track from a long-lived chargino in 139 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Long-lived charginos decay into quasi-degenerate neutralino emitting a low-momentum particle whose identification is not attempted. The signal is identified by requiring short tracklets in the four pixel layers with no continuation in the SCT (strip) detector. The main background from fake tracklets is estimated directly with the data. No significant excess above the background prediction is found. The results are interpreted in an AMSB scenario (win LSP), on ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}^{\pm}}{{\widetilde{\mathit \chi}}^{\pm}}$ and ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, assuming B( ${{\widetilde{\mathit \chi}}^{\pm}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\mathit \pi}^{\pm}}$) = 100$\%$, see their figure 7. Results are also interpreted in a higgsino-LSP model, with ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}^{\pm}}{{\widetilde{\mathit \chi}}^{\mp}}$, and ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1,2}}}^{0}}$, assuming B( ${{\widetilde{\mathit \chi}}^{\pm}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\mathit \pi}^{\pm}}$) = 95.5$\%$, B( ${{\widetilde{\mathit \chi}}^{\pm}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\mathit e}^{\pm}}$) = 3$\%$, B( ${{\widetilde{\mathit \chi}}^{\pm}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\mathit \mu}^{\pm}}$) = 1.5$\%$, see their figure 8. Finally, results are interpreted in a simplified model of gluino pair production, with ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\widetilde{\mathit g}}}{{\widetilde{\mathit g}}}$ and B( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$) = B( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}^{+}}$) = B( ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\widetilde{\mathit \chi}}^{-}}$) = 1/3, see their figure 9.
9  TUMASYAN 2022V searched in 137 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for evidence of electroweakino pair production with decay to two Higgs bosons ${{\mathit H}}$, with ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, resulting either in 4 resolved b-jets or two large-radius jets, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the mass of ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ and ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ in the models Tn1n1A, see their Figures 11 and 12, or in a model where higgsino-like nearly mass degenerate ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ and ${{\widetilde{\mathit \chi}}_{{{3}}}^{0}}$ are pair produced and each decay to ${{\mathit H}}$ and a bino-like ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, see their Figure 13. Limits are also set on the gluino mass in the model Tglu1I, see their Figure 14.
10  AAD 2021AK searched in 139 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for pair production of gluinos and squarks in events with a single isolated electron or muon, originating from the decay of a ${{\mathit W}}$ boson, multiple jets and significant $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1B simplified model and on the squark mass in the Tsqk3 simplified model, see their Figure 8.
11  AAD 2021L searched in 139 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for pair production of gluinos and squarks in events with jets, large missing transverse momentum but no electrons or muons. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A and Tglu1B simplified models, on the squark mass in the Tsqk1 and Tsqk3 simplified models and in a simplified model for gluino-squark production, see their Figures 13-17.
12  AAD 2021X searched in 139 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for the decay of long-lived R-hadrons stopped by the calorimeter, producing high-momentum jets resulting in large out-of-time energy deposits in the calorimeters. These decays are detected using data collected during periods in the LHC bunch structure when collisions are absent. No significant excess above the predicted background is observed. Limits are set on the R-hadron mass in the Tglu1A simplified model ad a function of the R-hadron lifetime, for different ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$. See Figures 9, 10.
13  SIRUNYAN 2021AD searched in 137 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for supersymmetry in events with multiple jets, no leptons, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the top squark mass in the simplified models Tstop1, Tstop2 with ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = (${\mathit m}_{{{\widetilde{\mathit t}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2, and a 50:50 mixture of these with ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 5 GeV, see their Figure 8. Limits are also set on the top squark mass for 10 GeV $<$ ${\mathit m}_{{{\widetilde{\mathit t}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ $<$ 80 GeV in the simplified models Tstop2, Tstop 3, and Tstop4, see their Figure 9. For indirect top squark production, limits are set on the gluino mass in the simplified models Tglu3A, Tglu3C with ${\mathit m}_{{{\widetilde{\mathit t}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 20 GeV, and Tglu3D with ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 5 GeV, see their Figure 10.
14  SIRUNYAN 2021M searched in 137 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for supersymmetry in events with two opposite-sign same-flavor leptons (electrons, muons) and $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the simplified model Tglu4C, see their Figure 10, on the ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ and ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ mass in Tchi1n2Fa, see their Figure 11, on the ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ mass in Tn1n1C and Tn1n1B for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}={\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}={\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$, see their Figure 12. Limits are also set on the light squark mass for the simplified model Tsqk2A, on the sbottom mass in Tsbot3, see their Figure 13, and on the slepton mass in direct electroweak pair production of mass-degenerate left- and right-handed sleptons (selectrons and smuons), see their Figure 14.
15  AAD 2020AL searched in 139 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with 8 or more jets and moderate missing transverse momentum. The selection makes requirements according to the number of ${{\mathit b}}$-tagged jets and the scalar sum of masses of large-radius jets. No significant excess above the Standard Model expectations is observed. Limits up to about 2 TeV are set on the gluino mass in Tglu1E simplified model. Limits up to about 1.8 TeV are set on the gluino mass in Tglu3A simplified model. See their Fig. 10(a).
16  AAD 2020V searched in 139 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in final states with same-sign charged leptons (electrons or muons) and jets. No significant excess over the Standard Model expectation is observed. In the Tglu1E model, considering off-shell intermediate ${{\mathit W}}$ and ${{\mathit Z}}$ bosons in the decay chains, gluino masses are excluded at 95$\%$ C.L. up to 1600 GeV for neutralino masses of 100 GeV or above (up to 1000 GeV). See their Fig. 7(a).
17  SIRUNYAN 2020B searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least one photon and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on chargino masses in a general gauge-mediated SUSY breaking (GGM) scenario Tchi1n12-GGM, see Figure 4. Limits are also set on the NLSP mass in the Tchi1chi1F and Tchi1chi1G simplified models, see their Figure 5. Finally, limits are set on the gluino mass in the Tglu4A simplified model, see Figure 6.
18  SIRUNYAN 2020BJ searched in 137 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing two hadronically decaying, highly energetic ${{\mathit Z}}$ bosons and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1H simplified model, see their Figure 9.
19  SIRUNYAN 2020E searched in 137 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with a single electron or muon and multiple jets, including at least one identified as originating from a ${{\mathit b}}$-quark, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A simplified model, see their Fig. 10, and the Tglu3C simplified model, see their Fig. 11.
20  SIRUNYAN 2020T searched in 137 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least two jets, and two isolated same-sign or three or more charged leptons (electrons or muons). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figure 7, and in the Tglu1C and Tglu1B simplified models, see their Figures 8 and 9. Limits are also set on the sbottom mass in the Tsbot2 simplified model, see their Figure 10, and on the stop mass in the Tstop7 simplified model, see their Figure 11. Finally, limits are set on the gluino mass in RPV simplified models where the gluino decays either via ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\overline{\mathit q}}}{{\overline{\mathit q}}}{+}$ ${{\mathit e}}$ $/$ ${{\mathit \mu}}$ $/$ ${{\mathit \tau}}$ or via ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}{{\mathit s}}$, see Figure 12.
21  AABOUD 2019I searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in final states with hadronic jets, 1 or two hadronically decaying ${{\mathit \tau}}$ and $\not E_T$. In Tglu1F, gluino masses are excluded at 95$\%$ C.L. up to 2000 GeV for neutralino masses of 100 GeV or below. Neutralino masses up to 1000 GeV are excluded for all gluino masses below 1400 GeV. See their Fig. 9. Limits are also presented in the context of Gauge-Mediated Symmetry Breaking models: in this case, values of ${{\mathit \Lambda}}$ below 110 TeV are excluded at the 95$\%$ CL for all values of tan${{\mathit \beta}}$ in the range 2 $<$ tan${{\mathit \beta}}$ $<$ 60, see their Fig 10.
22  SIRUNYAN 2019AG searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two photons and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4B simplified model and on the squark mass in the Tsqk4B simplified model, see their Figure 3.
23  SIRUNYAN 2019AU searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at last one photon, jets, some of which are identified as originating from ${{\mathit b}}$-quarks, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the gluino mass in the Tglu4C, Tglu4D and Tglu4E simplified models, and on the top squark mass in the Tstop13 simplified model, see their Figure 5.
24  SIRUNYAN 2019CE searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for new particles decaying to a photon and two gluons in events with at least three large-radius jets of which two have substructure and are composed of a photon and two gluons. No statistically significant excess is observed above the SM background expectation. Upper limits at 95$\%$ confidence level on the cross section for gluino pair production are set, using a simplified Tglu1A-like stealth SUSY model. Gluino masses up to 1500-1700 GeV are excluded, depending on the neutralino mass, with the highest exclusion set for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 200 GeV. See their Fig 4.
25  SIRUNYAN 2019CH searched in 137 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing multiple jets and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A and Tglu3A simplified models, see their Figure 13. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 simplified models, see their Figure 14.
26  SIRUNYAN 2019K searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with a photon, an electron or muon, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. In the framework of GMSB, limits are set on the chargino and neutralino mass in the Tchi1n1A simplified model, see their Figure 6. Limits are also set on the gluino mass in the Tglu4A simplified model, and on the squark mass in the Tsqk4A simplified model, see their Figure 7.
27  SIRUNYAN 2019S searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with zero or one charged leptons, jets and $\not E_T$. The razor variables (${{\mathit M}_{{{R}}}}$ and ${{\mathit R}^{2}}$) are used to categorize the events. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu3C simplified models, see Figures 22 and 23, and on the stop mass in the Tstop1 simplified model, see their Figure 24.
28  AABOUD 2018AR searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for gluino pair production in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from ${{\mathit b}}$-quarks. No excess is found above the predicted background. In Tglu3A models, gluino masses of less than 1.97 TeV are excluded for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ below 300 GeV, see their Fig. 10(a). Interpretations are also provided for scenarios where Tglu3A modes mix with Tglu2A and Tglu3D, see their Fig 11.
29  AABOUD 2018AR searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for gluino pair production in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from ${{\mathit b}}$-quarks. No excess is found above the predicted background. In Tglu2A models, gluino masses of less than 1.92 TeV are excluded for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ below 600 GeV, see their Fig. 10(b). Interpretations are also provided for scenarios where Tglu2A modes mix with Tglu3A and Tglu3D, see their Fig 11.
30  AABOUD 2018AS searched for in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for gluino pair production in the context of AMSB or phenomenological MSSM scenarios with wino-like LSP and long-lived charginos. Events with a disappearing track due to a low-momentum pion accompanied by at least four jets are considered. No significant excess above the Standard Model expectations is observed. Exclusion limits are set at 95$\%$ confidence level on the mass of gluinos for different chargino lifetimes. Gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns, corresponding to a mass-splitting between the charged and neutral wino of around 160 MeV. See their Fig. 9.
31  AABOUD 2018BJ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic endpoint values in the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1G model: gluino masses below 1850 GeV are excluded for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV, see their Fig. 12(a).
32  AABOUD 2018BJ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic endpoint values in the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1H model: gluino masses below 1650 GeV are excluded for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV, see their Fig. 13(a).
33  AABOUD 2018U searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results for the di-photon channel are interpreted in terms of lower limits on the masses of gluinos in Tglu4B models, which reach as high as 2.3 TeV. Gluinos with masses below 2.15 TeV are excluded for any NLSP mass, see their Fig. 8.
34  AABOUD 2018U searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with at least one isolated photon, possibly jets and significant transverse momentum targeting generalised models of gauge-mediated SUSY breaking. No significant excess of events is observed above the SM prediction. Results of the ${{\mathit \gamma}}$ + jets + $\not E_T$ channel are interpreted in terms of lower limits on the masses of gluinos in GGM higgsino-bino models (mix of Tglu4B and Tglu4C), which reach as high as 2050 GeV. Gluino masses below 1600 GeV are excluded for any NLSP mass provided that ${\mathit m}_{{{\widetilde{\mathit g}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}>$ 50 GeV. See their Fig. 11.
35  AABOUD 2018V searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1A model: gluino masses below 2030 GeV are excluded for massless LSP, see their Fig. 13(b).
36  AABOUD 2018V searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1B model. Assuming that ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 0.5 (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$), gluino masses below 1980 GeV are excluded for massless LSP, see their Fig. 14(c). Exclusions are also shown assuming ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 60 GeV, see their Fig. 14(d).
37  AABOUD 2018V searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1E model: gluino masses below 1750 GeV are excluded for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV and any ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ above 100 GeV, see their Fig. 15. Gluino mass exclusion up to 2 TeV is found for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = 1 TeV.
38  SIRUNYAN 2018AA searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least one photon and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on wino masses in a general gauge-mediated SUSY breaking (GGM) scenario with bino-like ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ and wino-like ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ and ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ , see Figure 7. Limits are also set on the NLSP mass in the Tchi1n1A and Tchi1chi1A simplified models, see their Figure 8. Finally, limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, see their Figure 9, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 10.
39  SIRUNYAN 2018AC searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with a single electron or muon and multiple jets. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1B simplified models, see their Figure 5.
40  SIRUNYAN 2018AL searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least three charged leptons, in any combination of electrons and muons, jets and significant $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, see their Figure 5. Limits are also set on the sbottom mass in the Tsbot2 simplified model, see their Figure 6, and on the stop mass in the Tstop7 simplified model, see their Figure 7.
41  SIRUNYAN 2018AR searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing two opposite-charge, same-flavour leptons (electrons or muons), jets and $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see their Figure 7. Limits are also set on the chargino/neutralino mass in the Tchi1n2F simplified models, see their Figure 8, and on the higgsino mass in the Tn1n1B and Tn1n1C simplified models, see their Figure 9. Finally, limits are set on the sbottom mass in the Tsbot3 simplified model, see their Figure 10.
42  SIRUNYAN 2018AY searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing one or more jets and significant $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see their Figure 3. Limits are also set on squark, sbottom and stop masses in the Tsqk1, Tsbot1, Tstop1 and Tstop4 simplified models, see their Figure 3. Finally, limits are set on long-lived gluino masses in a Tglu1A simplified model where the gluino is metastable or long-lived with proper decay lengths in the range $10^{-3}$ mm $<$ c${{\mathit \tau}}$ $<$ $10^{5}$ mm, see their Figure 4.
43  SIRUNYAN 2018D searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing identified hadronically decaying top quarks, no leptons, and $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the stop mass in the Tstop1 simplified model, see their Figure 8, and on the gluino mass in the Tglu3A, Tglu3B, Tglu3C and Tglu3E simplified models, see their Figure 9.
44  SIRUNYAN 2018M searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with one or more high-momentum Higgs bosons, decaying to pairs of ${{\mathit b}}$-quarks, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1I and Tglu1J simplified models, see their Figure 3.
45  AABOUD 2017AJ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.75 TeV are set on the gluino mass in Tglu3A simplified models in case of off-shell top squarks and for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV. See their Figure 4(a).
46  AABOUD 2017AJ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.57 TeV are set on the gluino mass in Tglu1E simplified models (2-step models) for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 100 GeV. See their Figure 4(b).
47  AABOUD 2017AJ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two same-sign or three leptons, jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.86 TeV are set on the gluino mass in Tglu1G simplified models for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 200 GeV. See their Figure 4(c).
48  AABOUD 2017AR searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with one isolated lepton, at least two jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 2.1 TeV are set on the gluino mass in Tglu1B simplified models, with $\mathit x$ = (${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$) $/$ (${\mathit m}_{{{\widetilde{\mathit g}}}}−{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$) = 1/2.Similar limits are obtained for variable $\mathit x$ and fixed neutralino mass, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 60 GeV. See their Figure 13.
49  AABOUD 2017AR searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with one isolated lepton, at least two jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.74 TeV are set on the gluino mass in Tglu1E simplified model. Limits up to 1.7 TeV are also set on pMSSM models leading to similar signal event topologies. See their Figure 13.
50  AABOUD 2017AY searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least four jets and large missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are set on the gluino mass in Tglu3A simplified models assuming ${\mathit m}_{{{\widetilde{\mathit t}}_{{{1}}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 5 GeV. See their Figure 13.
51  AABOUD 2017AZ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or ${{\mathit b}}$-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits up to 1.8 TeV are set on the gluino mass in Tglu1E simplified models. See their Figure 6b.
52  AABOUD 2017AZ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or ${{\mathit b}}$-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits up to 1.54 TeV are set on the gluino mass in Tglu3A simplified models. See their Figure 7a.
53  AABOUD 2017N searched in 14.7 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in final states with 2 same-flavor, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. In Tglu1J models, gluino masses are excluded at 95$\%$ C.L. up to 1300 GeV for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 0 GeV and ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = 1100 GeV. See their Fig. 12 for exclusion limits as a function of ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$. Limits are also presented assuming ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 100 GeV, see their Fig. 13.
54  AABOUD 2017N searched in 14.7 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in final states with 2 same-flavor, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. In Tglu1H models, gluino masses are excluded at 95$\%$ C.L. up to 1310 GeV for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 400 GeV and assuming ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2. See their Fig. 15.
55  AABOUD 2017N searched in 14.7 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in final states with 2 same-flavor, opposite-sign leptons (electrons or muons), jets and large missing transverse momentum. In Tglu1G models, gluino masses are excluded at 95$\%$ C.L. up to 1700 GeV for small ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$. The results probe kinematic endpoints as small as ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = (${\mathit m}_{{{\widetilde{\mathit g}}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2 = 50 GeV. See their Fig. 14.
56  KHACHATRYAN 2017 searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing four or more jets, no more than one lepton, and missing transverse momentum, using the razor variables (${{\mathit M}_{{{R}}}}$ and ${{\mathit R}^{2}}$) to discriminate between signal and background processes. No evidence for an excess over the expected background is observed. Limits are derived on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see Figs. 16 and 17. Also, assuming gluinos decay only via three-body processes involving third-generation quarks plus a neutralino/chargino, and assuming ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + 5 GeV, a branching ratio-independent limit on the gluino mass is given, see Fig. 16.
57  KHACHATRYAN 2017AD searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing at least four jets (including ${{\mathit b}}$-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Gluino masses up to 1550 GeV and neutralino masses up to 900 GeV are excluded at 95$\%$ C.L. See Fig. 13.
58  KHACHATRYAN 2017AD searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing at least four jets (including ${{\mathit b}}$-jets), missing transverse momentum and tagged top quarks. No evidence for an excess over the expected background is observed. Gluino masses up to 1450 GeV and neutralino masses up to 820 GeV are excluded at 95$\%$ C.L. See Fig. 13.
59  KHACHATRYAN 2017AS searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with a single electron or muon and multiple jets. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1B simplified models, see their Fig. 7.
60  KHACHATRYAN 2017AW searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least three charged leptons, in any combination of electrons and muons, and significant $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu1C simplified models, and on the sbottom mass in the Tsbot2 simplified model, see their Figure 4.
61  KHACHATRYAN 2017P searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with one or more jets and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A, Tglu3B, Tglu3C and Tglu3D simplified models, see their Figures 7 and 8. Limits are also set on the squark mass in the Tsqk1 simplified model, see their Fig. 7, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 8. Finally, limits are set on the stop mass in the Tstop1, Tstop3, Tstop4, Tstop6 and Tstop7 simplified models, see Fig. 8.
62  KHACHATRYAN 2017V searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two photons and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino and squark mass in the context of general gauge mediation models Tglu4B and Tsqk4, see their Fig. 4.
63  SIRUNYAN 2017AF searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with a single lepton (electron or muon), jets, including at least one jet originating from a ${{\mathit b}}$-quark, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A and Tglu3B simplified models, see their Figure 2.
64  SIRUNYAN 2017AY searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least one photon, jets and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4A and Tglu4B simplified models, and on the squark mass in the Tskq4A and Tsqk4B simplified models, see their Figure 6.
65  SIRUNYAN 2017AZ searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with one or more jets and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A, Tglu3A simplified models, see their Figures 6. Limits are also set on the squark mass in the Tsqk1 simplified model (for single light squark and for 8 degenerate light squarks), on the sbottom mass in the Tsbot1 simplified model and on the stop mass in the Tstop1 simplified model, see their Fig. 7. Finally, limits are set on the stop mass in the Tstop2, Tstop4 and Tstop8 simplified models, see Fig. 8.
66  SIRUNYAN 2017P searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with multiple jets and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A, Tglu3A and Tglu3D simplified models, see their Fig. 12. Limits are also set on the squark mass in the Tsqk1 simplified model, on the stop mass in the Tstop1 simplified model, and on the sbottom mass in the Tsbot1 simplified model, see Fig. 13.
67  SIRUNYAN 2017S searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two isolated same-sign leptons, jets, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the mass of the gluino mass in the Tglu3A, Tglu3B, Tglu3C, Tglu3D and Tglu1B simplified models, see their Figures 5 and 6, and on the sbottom mass in the Tsbot2 simplified model, see their Figure 6.
68  AABOUD 2016AC searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in final states with hadronic jets, 1 or two hadronically decaying ${{\mathit \tau}}$ and $\not E_T$. In Tglu1F, gluino masses are excluded at 95$\%$ C.L. up to 1570 GeV for neutralino masses of 100 GeV or below. Neutralino masses up to 700 GeV are excluded for all gluino masses between 800 GeV and 1500 GeV, while the strongest neutralino-mass exclusion of 750 GeV is achieved for gluino masses around 1400 GeV. See their Fig. 8. Limits are also presented in the context of Gauge-Mediated Symmetry Breaking models: in this case, values of ${{\mathit \Lambda}}$ below 92 TeV are excluded at the 95$\%$ CL, corresponding to gluino masses below 2000 GeV. See their Fig. 9.
69  AABOUD 2016J searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in final states with one isolated electron or muon, hadronic jets, and $\not E_T$. Gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino are targeted and gluino masses are excluded at 95$\%$ C.L. up to 1460 GeV. A 100$\%$ of stops decaying via charm + neutralino is assumed. The results are also valid in case of 4-body decays ${{\widetilde{\mathit t}}_{{{1}}}}$ $\rightarrow$ ${{\mathit f}}{{\mathit f}^{\,'}}{{\mathit b}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$. See their Fig. 8.
70  AABOUD 2016M searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two photons, hadronic jets and $\not E_T$. No significant excess above the Standard Model expectations is observed. Exclusion limits at 95$\%$ C.L. are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for bino-like NLSP. See their Fig.$~$3.
71  AABOUD 2016N searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing hadronic jets, large $\not E_T$, and no electrons or muons. No significant excess above the Standard Model expectations is observed. Gluino masses below 1510 GeV are excluded at the 95$\%$ C.L. in a simplified model with only gluinos and the lightest neutralino. See their Fig. 7b.
72  AABOUD 2016N searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing hadronic jets, large $\not E_T$, and no electrons or muons. No significant excess above the Standard Model expectations is observed. Gluino masses below 1500 GeV are excluded at the 95$\%$ C.L. in a simplified model with gluinos decaying via an intermediate ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ to two quarks, a ${{\mathit W}}$ boson and a ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 200 GeV. See their Fig 8.
73  AAD 2016AD searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing several energetic jets, of which at least three must be identified as ${{\mathit b}}$-jets, large $\not E_T$ and no electrons or muons. No significant excess above the Standard Model expectations is observed. For ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ below 800 GeV, gluino masses below 1780 GeV are excluded at 95$\%$ C.L. for gluinos decaying via bottom squarks. See their Fig. 7a.
74  AAD 2016AD searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of pp collisions at $\sqrt {s }$ = 13 TeV for events containing several energetic jets, of which at least three must be identified as ${{\mathit b}}$-jets, large $\not E_T$ and one electron or muon. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No significant excess above the Standard Model expectations is observed. For ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ below 700 GeV, gluino masses below 1760 GeV are excluded at 95$\%$ C.L. for gluinos decaying via top squarks. See their Fig. 7b.
75  AAD 2016BB searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with exactly two same-sign leptons or at least three leptons, multiple hadronic jets, ${{\mathit b}}$-jets, and $\not E_T$. No significant excess over the Standard Model expectation is found. Exclusion limits at 95$\%$ C.L. are set on the gluino mass in various simplified models (Tglu1D, Tglu1E, Tglu3A). See their Figs. 4.a, 4.b, and 4.d.
76  AAD 2016BG searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in final states with one isolated electron or muon, hadronic jets, and $\not E_T$. The data agree with the SM background expectation in the six signal selections defined in the search, and the largest deviation is a 2.1 standard deviation excess. Gluinos are excluded at 95$\%$ C.L. up to 1600 GeV assuming they decay via the lightest chargino to the lightest neutralino as in the model Tglu1B for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$=100 GeV, assuming ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}=({\mathit m}_{{{\widetilde{\mathit g}}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$)/2. See their Fig.$~$6.
77  AAD 2016V searched in 3.2 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with $\not E_T$ various hadronic jet multiplicities from ${}\geq{}$7 to ${}\geq{}$10 and with various ${{\mathit b}}$-jet multiplicity requirements. No significant excess over the Standard Model expectation is found. Exclusion limits at 95$\%$ C.L. are set on the gluino mass in one simplified model (Tglu1E) and a pMSSM-inspired model. See their Fig. 5.
78  KHACHATRYAN 2016AM searched in 19.7 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with highly boosted ${{\mathit W}}$-bosons and ${{\mathit b}}$-jets, using the razor variables (${{\mathit M}_{{{R}}}}$ and ${{\mathit R}^{2}}$) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3C and Tglu3B simplified models, see Fig. 12.
79  KHACHATRYAN 2016BJ searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the following simplified models: Tglu3A and Tglu3D, see Fig. 4, Tglu3B and Tglu3C, see Fig. 5, and Tglu1B, see Fig. 7.
80  KHACHATRYAN 2016BS searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least one energetic jet , no isolated leptons, and significant $\not E_T$, using the transverse mass variable ${{\mathit M}_{{{T2}}}}$ to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu2A and Tglu3A simplified models, see Fig. 10 and Table 3.
81  KHACHATRYAN 2016BY searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with two opposite-sign, same-flavour leptons, jets, and missing transverse momentum. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu4C simplified model, see Fig. 4, and on sbottom masses in the Tsbot3 simplified model, see Fig. 5.
82  KHACHATRYAN 2016V searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least four energetic jets and significant $\not E_T$, no identified isolated electron or muon or charged track. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu1A, Tglu1C, Tglu2A, and Tglu3A simplified models, see Fig. 8.
83  AAD 2015BG searched in 20.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with jets, missing $\mathit E_{T}$, and two opposite-sign same flavor isolated leptons featuring either a kinematic edge, or a peak at the ${{\mathit Z}}$-boson mass, in the invariant mass spectrum. No evidence for a statistically significant excess over the expected SM backgrounds are observed and 95$\%$ C.L. exclusion limits are derived in a GGM simplified model of gluino pair production where the gluino decays into quarks, a ${{\mathit Z}}$-boson, and a massless gravitino LSP, see Fig. 12. Also, limits are set in simplified models with slepton/sneutrino intermediate states, see Fig. 13.
84  AAD 2015BV summarized and extended ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or ${\mathit {\mathit b}}$-jets in the $\sqrt {s }$ =8 TeV data set collected in 2012. The paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as new analyses. Exclusion limits at 95$\%$ C.L. are set on the gluino mass in several R-parity conserving models, leading to a generalized constraint on gluino masses exceeding 1150 GeV for lightest supersymmetric particle masses below 100 GeV. See their Figs. 10, 19, 20, 21, 23, 25, 26, 29-37.
85  AAD 2015BX interpreted the results of a wide range of ATLAS direct searches for supersymmetry, during the first run of the LHC using the $\sqrt {s }$ =7 TeV and $\sqrt {s }$ = 8 TeV data set collected in 2012, within the wider framework of the phenomenological MSSM (pMSSM). The integrated luminosity was up to 20.3 ${\mathrm {fb}}{}^{-1}$. From an initial random sampling of 500 million pMSSM points, generated from the 19-parameter pMSSM, a total of 310,327 model points with ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ LSP were selected each of which satisfies constraints from previous collider searches, precision measurements, cold dark matter energy density measurements and direct dark matter searches. The impact of the ATLAS Run 1 searches on this space was presented, considering the fraction of model points surviving, after projection into two-dimensional spaces of sparticle masses. Good complementarity is observed between different ATLAS analyses, with almost all showing regions of unique sensitivity. ATLAS searches have good sensitivity at LSP mass below 800 GeV.
86  AAD 2015CA searched in 20.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with one or more photons, hadronic jets or ${{\mathit b}}$-jets and $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for bino-like or higgsino-bino admixtures NLSP, see Fig. 8, 10, 11
87  KHACHATRYAN 2015AF searched in 19.5 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with at least two energetic jets and significant $\not E_T$, using the transverse mass variable ${{\mathit M}_{{{T2}}}}$ to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, see Fig. 13(a), or where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, see Fig. 13(b), or where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, see Fig. 13(c). See also Table 5. Exclusions in the CMSSM, assuming tan ${{\mathit \beta}}$ = 30, $\mathit A_{0}$ = $−$2 max(${\mathit m}_{\mathrm {0}}$, ${\mathit m}_{\mathrm {1/2}}$) and ${{\mathit \mu}}$ $>$ 0, are also presented, see Fig. 15.
88  KHACHATRYAN 2015I searched in 19.5 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events in which ${\mathit {\mathit b}}$-jets and four ${{\mathit W}}$-bosons are produced. Five individual search channels are combined (fully hadronic, single lepton, same-sign dilepton, opposite-sign dilepton, multilepton). No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a simplified model where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, see Fig. 5. Also a simplified model with gluinos decaying into on-shell top squarks is considered, see Fig. 6.
89  KHACHATRYAN 2015X searched in 19.3${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with at least two energetic jets, at least one of which is required to originate from a ${\mathit {\mathit b}}$ quark, and significant $\not E_T$, using the razor variables ($\mathit M_{R}$) and $\mathit R{}^{2}$) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ and the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ take place with branching ratios varying between 0, 50 and 100$\%$, see Figs. 13 and 14.
90  AAD 2014AE searched in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for strongly produced supersymmetric particles in events containing jets and large missing transverse momentum, and no electrons or muons. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5, 6 and 7. Limits are also derived in the mSUGRA/CMSSM with parameters tan $\beta $ = 30, ${{\mathit A}_{{{0}}}}$ = $-2$ ${\mathit m}_{\mathrm {0}}$ and ${{\mathit \mu}}$ $>$ 0, see their Fig. 8.
91  AAD 2014AG searched in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events containing one hadronically decaying ${{\mathit \tau}}$-lepton, zero or one additional light leptons (electrons or muons), jets and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95$\%$ C.L. are set in several SUSY scenarios. For an interpretation in the minimal GMSB model, see their Fig. 8. For an interpretation in the mSUGRA/CMSSM with parameters tan $\beta $ = 30, ${{\mathit A}_{{{0}}}}$ = $-2$ ${\mathit m}_{\mathrm {0}}$ and ${{\mathit \mu}}$ $>$ 0, see their Fig. 9. For an interpretation in the framework of natural Gauge Mediation, see Fig. 10. For an interpretation in the bRPV scenario, see their Fig. 11.
92  AAD 2014X searched in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a general gauge-mediation model (GGM) where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, with ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}{{\widetilde{\mathit G}}}$, takes place with a branching ratio of 100$\%$, for two choices of tan $\beta $ = 1.5 and 30, see Fig. 11. Also some constraints on the higgsino mass parameter ${{\mathit \mu}}$ are discussed.
93  CHATRCHYAN 2014AH searched in 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for events with at least two energetic jets and significant $\not E_T$, using the razor variables (${{\mathit M}_{{{R}}}}$ and ${{\mathit R}^{2}}$) to discriminate between signal and background processes. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, see Fig. 28. Exclusions in the CMSSM, assuming tan $\beta $ = 10, ${{\mathit A}_{{{0}}}}$ = 0 and ${{\mathit \mu}}$ $>$ 0, are also presented, see Fig. 26.
94  CHATRCHYAN 2014AH searched in 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for events with at least two energetic jets and significant $\not E_T$, using the razor variables (${{\mathit M}_{{{R}}}}$ and ${{\mathit R}^{2}}$) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a ${{\mathit b}}$-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, see Figs. 28 and 29. Exclusions in the CMSSM, assuming tan $\beta $ = 10, ${{\mathit A}_{{{0}}}}$ = 0 and ${{\mathit \mu}}$ $>$ 0, are also presented, see Fig. 26.
95  CHATRCHYAN 2014AH searched in 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for events with at least two energetic jets and significant $\not E_T$, using the razor variables (${{\mathit M}_{{{R}}}}$ and ${{\mathit R}^{2}}$) to discriminate between signal and background processes. A second analysis requires at least one of the jets to be originating from a ${{\mathit b}}$-quark. No significant excess above the Standard Model expectations is observed. Limits are set on sbottom masses in simplified models where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, see Figs. 28 and 29. Exclusions in the CMSSM, assuming tan $\beta $ = 10, ${{\mathit A}_{{{0}}}}$ = 0 and ${{\mathit \mu}}$ $>$0, are also presented, see Fig. 26.
96  CHATRCHYAN 2014I searched in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events containing multijets and large $\not E_T$. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos that decay via ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ with a 100$\%$ branching ratio, see Fig. 7b, or via ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ with a 100$\%$ branching ratio, see Fig. 7c, or via ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, see Fig. 7d.
97  CHATRCHYAN 2014N searched in 19.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events containing a single isolated electron or muon and multiple jets, at least two of which are identified as originating from a ${{\mathit b}}$-quark. No significant excesses over the expected SM backgrounds are observed. The results are interpreted in three simplified models of gluino pair production with subsequent decay into virtual or on-shell top squarks, where each of the top squarks decays in turn into a top quark and a ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, see Fig. 4. The models differ in which masses are allowed to vary.
98  CHATRCHYAN 2014R searched in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a slepton co-NLSP simplified model (GMSB) where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}{{\widetilde{\mathit G}}}$ takes place with a branching ratio of 100$\%$, see Fig. 8.
99  CHATRCHYAN 2014R searched in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with at least three leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in a simplified model where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, see Fig. 11.
100  AABOUD 2018BJ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with two opposite-sign charged leptons (electrons and muons), jets and missing transverse momentum, with various requirements to be sensitive to signals with different kinematic endpoint values in the dilepton invariant mass distribution. The data are found to be consistent with the SM expectation. Results are interpreted in the Tglu1H model in case of ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 1 GeV: for any ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$, gluino masses below 1500 GeV are excluded, see their Fig. 14(a).
101  AABOUD 2018V searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in events with no charged leptons, jets and missing transverse momentum. The data are found to be consistent with the SM expectation. Results are interpreted in a Tglu1C-like model, assuming 50$\%$ BR for each gluino decay mode. Gluino masses below 1770 GeV are excluded for any ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ $−$ ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ and ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 60 GeV, see their Fig. 16(b).
102  AABOUD 2017AZ searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with at least seven jets and large missing transverse momentum. Selected events are further classified based on the presence of large R-jets or ${{\mathit b}}$-jets and no leptons. No significant excess above the Standard Model expectations is observed. Limits are set for pMSSM models with ${{\mathit M}_{{{1}}}}$ = 60 GeV, tan(${{\mathit \beta}}$) = 10, ${{\mathit \mu}}$ $<$ 0 varying the soft-breaking parameters ${{\mathit M}_{{{3}}}}$ and ${{\mathit \mu}}$. Gluino masses up to 1600 GeV are excluded for ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 200 GeV. See their Figure 6a and text for details on the model.
103  KHACHATRYAN 2016AY searched in 2.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with one isolated high transverse momentum lepton (${{\mathit e}}$ or ${{\mathit \mu}}$), hadronic jets of which at least one is identified as coming from a ${{\mathit b}}$-quark, and large $\not E_T$. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in the Tglu3A simplified model, see Fig. 10, and in the Tglu3B model, see Fig. 11.
104  KHACHATRYAN 2016BT performed a global Bayesian analysis of a wide range of CMS results obtained with data samples corresponding to 5.0 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV and in 19.5 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The set of searches considered, both individually and in combination, includes those with all-hadronic final states, same-sign and opposite-sign dileptons, and multi-lepton final states. An interpretation was given in a scan of the 19-parameter pMSSM. No scan points with a gluino mass less than 500 GeV survived and 98$\%$ of models with a squark mass less than 300 GeV were excluded.
105  AAD 2015AB searched for the decay of neutral, weakly interacting, long-lived particles in 20.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. Signal events require at least two reconstructed vertices possibly originating from long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. No significant excess of events over the expected background was found. Results were interpreted in Stealth SUSY benchmark models where a pair of gluinos decay to long-lived singlinos, ${{\widetilde{\mathit S}}}$, which in turn each decay to a low-mass gravitino and a pair of jets. The 95$\%$ confidence-level limits are set on the cross section ${\times }$ branching ratio for the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit S}}}{{\mathit g}}$, as a function of the singlino proper lifetime (c${{\mathit \tau}}$). See their Fig. 10(f)
106  AAD 2015AI searched in 20 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events containing at least one isolated lepton (electron or muon), jets, and large missing transverse momentum. No excess of events above the expected level of Standard Model background was found. Exclusion limits at 95$\%$ C.L. are set on the gluino mass in the CMSSM/mSUGRA, see Fig. 15, in the NUHMG, see Fig. 16, and in various simplified models, see Figs. $18 - 22$.
107  AAD 2015CB searched for events containing at least one long-lived particle that decays at a significant distance from its production point (displaced vertex, DV) into two leptons or into five or more charged particles in 20.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The dilepton signature is characterised by DV formed from at least two lepton candidates. Four different final states were considered for the multitrak signature, in which the DV must be accompanied by a high-transverse momentum muon or electron candidate that originates from the DV, jets or missing transverse momentum. No events were observed in any of the signal regions. Results were interpreted in SUSY scenarios involving $\mathit R$-parity violation, split supersymmetry, and gauge mediation. See their Fig. $12 - 20$.
108  KHACHATRYAN 2015AD searched in 19.4 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with two opposite-sign same flavor isolated leptons featuring either a kinematic edge, or a peak at the ${{\mathit Z}}$-boson mass, in the invariant mass spectrum. No evidence for a statistically significant excess over the expected SM backgrounds is observed and 95$\%$ C.L. exclusion limits are derived in a simplified model of gluino pair production where the gluino decays into quarks, a ${{\mathit Z}}$-boson, and a massless gravitino LSP, see Fig. 9.
109  KHACHATRYAN 2015AZ searched in 19.7 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with either at least one photon, hadronic jets and $\not E_T$ (single photon channel) or with at least two photons and at least one jet and using the razor variables. No significant excess above the Standard Model expectations is observed. Limits are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for both a bino-like and wino-like neutralino NLSP scenario, see Fig. 8 and 9.
110  AAD 2014AX searched in 20.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for the strong production of supersymmetric particles in events containing either zero or at last one high high-$p_T$ lepton, large missing transverse momentum, high jet multiplicity and at least three jets identified as originating from ${{\mathit b}}$-quarks. No excess over the expected SM background is observed. Limits are derived in mSUGRA/CMSSM models with tan $\beta $ = 30, ${{\mathit A}_{{{0}}}}$ = $-2{{\mathit m}_{{{0}}}}$ and ${{\mathit \mu}}$ $>$ 0, see their Fig. 14. Also, exclusion limits in simplified models containing gluinos and scalar top and bottom quarks are set, see their Figures 12, 13.
111  AAD 2014E searched in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for strongly produced supersymmetric particles in events containing jets and two same-sign leptons or three leptons. The search also utilises jets originating from ${{\mathit b}}$-quarks, missing transverse momentum and other variables. No excess over the expected SM background is observed. Exclusion limits are derived in simplified models containing gluinos and squarks, see Figures 5 and 6. In the ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{(*)\pm}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}^{(*)}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, the following assumptions have been made: ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = 0.5 ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + ${\mathit m}_{{{\widetilde{\mathit g}}}}$, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = 0.5 (${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$), ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 520 GeV. In the ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \nu}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ or ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}$( ${{\mathit \nu}}{{\mathit \nu}}$) ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ simplified model, the following assumptions have been made: ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ = ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}}$ = 0.5 (${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ + ${\mathit m}_{{{\widetilde{\mathit g}}}}$), ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ $<$ 660 GeV. Limits are also derived in the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.
112  CHATRCHYAN 2014H searched in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, or where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit t}}}{{\mathit t}}$, ${{\widetilde{\mathit t}}}$ $\rightarrow$ ${{\mathit t}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, with varying mass of the ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, or where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\widetilde{\mathit b}}}{{\mathit b}}$, ${{\widetilde{\mathit b}}}$ $\rightarrow$ ${{\mathit t}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, with varying mass of the ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, see Fig. 5.
113  CHATRCHYAN 2014H searched in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}^{\,'}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, with varying mass of the ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ and ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, see Fig. 7.
114  CHATRCHYAN 2014H searched in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with two isolated same-sign dileptons and jets in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the gluino mass in simplified models where the decay ${{\widetilde{\mathit g}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit t}}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ takes place with a branching ratio of 100$\%$, for two choices of ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}}$ and fixed ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$, see Fig. 6.
References