Other bounds on ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ from astrophysics and cosmology

INSPIRE   JSON  (beta) PDGID:
S046PHC
Most of these papers generally exclude regions in the $\mathit M_{2}~-~{{\mathit \mu}}$ parameter plane by requiring that the ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ contribution to the overall cosmological density is less than some maximal value to avoid overclosure of the Universe. Those not based on the cosmological density are indicated. Many of these papers also include LEP and/or other bounds.

VALUE DOCUMENT ID TECN  COMMENT
$\bf{\text{>46 GeV}}$ 1
ELLIS
00
 
RVUE
• • We do not use the following data for averages, fits, limits, etc. • •
2
ATHRON
01B
 
COSM
3
BECHTLE
01
 
COSM
4
BAGNASCHI
01
 
COSM
5
BUCHMUELLER
01
 
COSM
6
BUCHMUELLER
01A
 
COSM
7
ROSZKOWSKI
01
 
COSM
8
CABRERA
01
 
COSM
9
ELLIS
01B
 
COSM
8
STREGE
01
 
COSM
5
AKULA
01
 
COSM
5
ARBEY
01A
 
COSM
5
BAER
01
 
COSM
10
BALAZS
01
 
COSM
11
BECHTLE
01
 
COSM
12
BESKIDT
01
 
COSM
$\text{> 18 GeV}$ 13
BOTTINO
01
 
COSM
5
BUCHMUELLER
01
 
COSM
5
CAO
01A
 
COSM
5
ELLIS
01B
 
COSM
14
FENG
01B
 
COSM
5
KADASTIK
01
 
COSM
10
STREGE
01
 
COSM
15
BUCHMUELLER
01
 
COSM
16
ROSZKOWSKI
01
 
COSM
17
ELLIS
01
 
COSM
18
BUCHMUELLER
00
 
COSM
19
DREINER
00
 
THEO
20
BUCHMUELLER
00
 
COSM
16
ELLIS
00
 
COSM
21
CALIBBI
00
 
COSM
22
ELLIS
00
 
COSM
23
ALLANACH
00
 
COSM
24
DE-AUSTRI
00
 
COSM
16
BAER
00
 
COSM
25
BALTZ
00
 
COSM
$\text{> 6 GeV}$ 13, 26
BELANGER
00
 
THEO
27
ELLIS
00B
 
COSM
28
PIERCE
00A
 
COSM
29
BAER
00
 
COSM
$\text{> 6 GeV}$ 13
BOTTINO
00
 
COSM
29
CHATTOPADHYAY
00
 
COSM
30
ELLIS
00
 
COSM
16
ELLIS
00B
 
COSM
29
ELLIS
00C
 
COSM
29
LAHANAS
00
 
COSM
31
LAHANAS
00
 
COSM
32
BARGER
00C
 
COSM
33
ELLIS
00B
 
COSM
30
BOEHM
00B
 
COSM
34
FENG
00
 
COSM
$\text{<600 GeV}$ 35
ELLIS
99B
 
COSM
36
EDSJO
99
 
COSM Co-annihilation
37
BAER
99
 
COSM
16
BEREZINSKY
99
 
COSM
38
FALK
99
 
COSM $\mathit CP$-violating phases
39
DREES
99
 
COSM Minimal supergravity
40
FALK
99
 
COSM Sfermion mixing
39
KELLEY
99
 
COSM Minimal supergravity
41
MIZUTA
99
 
COSM Co-annihilation
42
LOPEZ
99
 
COSM Minimal supergravity, $\mathit m_{0}=\mathit A$=0
43
MCDONALD
99
 
COSM
44
GRIEST
99
 
COSM
45
NOJIRI
99
 
COSM Minimal supergravity
46
OLIVE
99
 
COSM
47
ROSZKOWSKI
99
 
COSM
48
GRIEST
99
 
COSM
46
OLIVE
98
 
COSM
$\text{none 100 eV - 15 GeV}$
SREDNICKI
98
 
COSM ${{\widetilde{\mathit \gamma}}}$; ${\mathit m}_{{{\widetilde{\mathit f}}}}$=100 GeV
$\text{none 100 eV-5 GeV}$
ELLIS
98
 
COSM ${{\widetilde{\mathit \gamma}}}$; for ${\mathit m}_{{{\widetilde{\mathit f}}}}$=100 GeV
GOLDBERG
98
 
COSM ${{\widetilde{\mathit \gamma}}}$
49
KRAUSS
98
 
COSM ${{\widetilde{\mathit \gamma}}}$
VYSOTSKII
98
 
COSM ${{\widetilde{\mathit \gamma}}}$
1  ELLIS 2000 updates ELLIS 1998. Uses LEP ${{\mathit e}^{+}}{{\mathit e}^{-}}$ data at $\sqrt {\mathit s }$=202 and 204$~$GeV to improve bound on neutralino mass to 51$~$GeV when scalar mass universality is assumed and 46$~$GeV when Higgs mass universality is relaxed. Limits on tan $\beta $ improve to $>2.7$ ($\mu >0$), $>2.2$ ($\mu <0$) when scalar mass universality is assumed and $>1.9$ (both signs of $\mu $) when Higgs mass universality is relaxed.
2  ATHRON 2017B places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using all Run I and the 13 fb${}^{-1}$ 13 TeV Run II LHC searches and other experimental data.
3  BECHTLE 2016 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using all Run I LHC searches.
4  BAGNASCHI 2015 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using all Run I LHC searches.
5  Implications of the LHC result on the Higgs mass and on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
6  BUCHMUELLER 2014A places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches using the 20 fb${}^{-1}$ 8 TeV and the 5 fb${}^{-1}$ 7 TeV LHC and the LUX data.
7  ROSZKOWSKI 2014 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using Bayesian statistics and indirect experimental searches using the 20 fb${}^{-1}$ LHC and the LUX data.
8  CABRERA 2013 and STREGE 2013 place constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry with and without non-universal Higgs masses using the 5.8 fb${}^{-1}$, $\sqrt {s }$ = 7 TeV ATLAS supersymmetry searches and XENON100 results.
9  ELLIS 2013B place constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry with and without Higgs mass universality. Models with universality below the GUT scale are also considered.
10  BALAZS 2012 and STREGE 2012 place constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 1 fb${}^{-1}$ LHC supersymmetry searches, the 5 fb${}^{-1}$ Higgs mass constraints, both with $\sqrt {s }$ = 7 TeV, and XENON100 results.
11  BECHTLE 2012 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches, using the 5 fb${}^{-1}$ LHC and XENON100 data.
12  BESKIDT 2012 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches, the 5 fb${}^{-1}$ LHC and the XENON100 data.
13  BELANGER 2004 and BOTTINO 2012 (see also BOTTINO 2003, BOTTINO 2003A and BOTTINO 2004) do not assume gaugino or scalar mass unification.
14  FENG 2012B places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry and large sfermion masses using the 1 fb${}^{-1}$ LHC supersymmetry searches, the 5 fb${}^{-1}$ LHC Higgs mass constraints both with $\sqrt {s }$ = 7 TeV, and XENON100 results.
15  BUCHMUELLER 2011 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches and including supersymmetry breaking relations between A and B parameters.
16  Places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$=1 supergravity models with radiative breaking of the electroweak gauge symmetry but non-Universal Higgs masses.
17  ELLIS 2010 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality above the GUT scale.
18  BUCHMUELLER 2009 places constraints on the SUSY parameter space in the framework of $\mathit N$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches.
19  DREINER 2009 show that in the general MSSM with non-universal gaugino masses there exists no model-independent laboratory bound on the mass of the lightest neutralino. An essentially massless ${{\mathit \chi}_{{{1}}}^{0}}$ is allowed by the experimental and observational data, imposing some constraints on other MSSM parameters, including ${{\mathit M}_{{{2}}}}$, ${{\mathit \mu}}$ and the slepton and squark masses.
20  BUCHMUELLER 2008 places constraints on the SUSY parameter space in the framework of $\mathit N$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches.
21  CALIBBI 2007 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality above the GUT scale including the effects of right-handed neutrinos.
22  ELLIS 2007 places constraints on the SUSY parameter space in the framework of $\mathit N$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry with universality below the GUT scale.
23  ALLANACH 2006 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
24  DE-AUSTRI 2006 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
25  BALTZ 2004 places constraints on the SUSY parameter space in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
26  Limit assumes a pseudo scalar mass $<$ 200 GeV. For larger pseudo scalar masses, ${\mathit m}_{{{\mathit \chi}}}$ $>$ 18(29) GeV for tan $\beta $ = 50(10). Bounds from WMAP, ($\mathit g$ $−$ 2)$_{{{\mathit \mu}}}$, ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$, LEP.
27  ELLIS 2004B places constraints on the SUSY parameter space in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry including supersymmetry breaking relations between A and B parameters. See also ELLIS 2003D.
28  PIERCE 2004A places constraints on the SUSY parameter space in the framework of models with very heavy scalar masses.
29  BAER 2003, CHATTOPADHYAY 2003, ELLIS 2003C and LAHANAS 2003 place constraints on the SUSY parameter space in the framework of ${{\mathit N}}$=1 supergravity models with radiative breaking of the electroweak gauge symmetry based on WMAP results for the cold dark matter density.
30  BOEHM 2000B and ELLIS 2003 place constraints on the SUSY parameter space in the framework of minimal $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. Includes the effect of ${{\mathit \chi}}-{{\widetilde{\mathit t}}}$ co-annihilations.
31  LAHANAS 2002 places constraints on the SUSY parameter space in the framework of minimal $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. Focuses on the role of pseudo-scalar Higgs exchange.
32  BARGER 2001C use the cosmic relic density inferred from recent CMB measurements to constrain the parameter space in the framework of minimal $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
33  ELLIS 2001B places constraints on the SUSY parameter space in the framework of minimal $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. Focuses on models with large tan $\beta $.
34  FENG 2000 explores cosmologically allowed regions of MSSM parameter space with multi-TeV masses.
35  ELLIS 1998B assumes a universal scalar mass and radiative supersymmetry breaking with universal gaugino masses. The upper limit to the LSP mass is increased due to the inclusion of ${{\mathit \chi}}−{{\widetilde{\mathit \tau}}_{{{R}}}}$ coannihilations.
36  EDSJO 1997 included all coannihilation processes between neutralinos and charginos for any neutralino mass and composition.
37  Notes the location of the neutralino ${{\mathit Z}}$ resonance and ${{\mathit h}}$ resonance annihilation corridors in minimal supergravity models with radiative electroweak breaking.
38  Mass of the bino (=LSP) is limited to ${\mathit m}_{{{\widetilde{\mathit B}}}}{ {}\lesssim{} }$ 350 GeV for ${\mathit m}_{{{\mathit t}}}$ = 174 GeV.
39  DREES 1993, KELLEY 1993 compute the cosmic relic density of the LSP in the framework of minimal $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
40  FALK 1993 relax the upper limit to the LSP mass by considering sfermion mixing in the MSSM.
41  MIZUTA 1993 include coannihilations to compute the relic density of Higgsino dark matter.
42  LOPEZ 1992 calculate the relic LSP density in a minimal SUSY GUT model.
43  MCDONALD 1992 calculate the relic LSP density in the MSSM including exact tree-level annihilation cross sections for all two-body final states.
44  GRIEST 1991 improve relic density calculations to account for coannihilations, pole effects, and threshold effects.
45  NOJIRI 1991 uses minimal supergravity mass relations between squarks and sleptons to narrow cosmologically allowed parameter space.
46  Mass of the bino (=LSP) is limited to ${\mathit m}_{{{\widetilde{\mathit B}}}}{ {}\lesssim{} }$ 350 GeV for ${\mathit m}_{{{\mathit t}}}{}\leq{}$200 GeV. Mass of the higgsino (=LSP) is limited to ${\mathit m}_{{{\widetilde{\mathit H}}}}{ {}\lesssim{} }$ 1 TeV for ${\mathit m}_{{{\mathit t}}}{}\leq{}$200 GeV.
47  ROSZKOWSKI 1991 calculates LSP relic density in mixed gaugino/higgsino region.
48  Mass of the bino (=LSP) is limited to ${\mathit m}_{{{\widetilde{\mathit B}}}}{ {}\lesssim{} }$ 550 GeV. Mass of the higgsino (=LSP) is limited to ${\mathit m}_{{{\widetilde{\mathit H}}}}{ {}\lesssim{} }$ $3.2$ TeV.
49  KRAUSS 1983 finds ${\mathit m}_{{{\widetilde{\mathit \gamma}}}}$ not 30 eV to 2.5 GeV. KRAUSS 1983 takes into account the gravitino decay. Find that limits depend strongly on reheated temperature. For example a new allowed region ${\mathit m}_{{{\widetilde{\mathit \gamma}}}}$ = 4$-$20 MeV exists if ${\mathit m}_{\mathrm {gravitino}}$ $<$40 TeV. See figure 2.
References