$> 430$ |
95 |
1 |
|
ATLS |
$> 490$ |
95 |
2 |
|
CMS |
$> 240$ |
95 |
2 |
|
CMS |
$>440$ |
95 |
3 |
|
ATLS |
$>385$ |
95 |
3 |
|
ATLS |
$\bf{>286}$ |
95 |
3 |
|
ATLS |
$\text{none 124 - 309}$ |
95 |
4 |
|
LHCB |
$>98$ |
95 |
5 |
|
OPAL |
$\text{ none 2 - 87.5}$ |
95 |
6 |
|
DLPH |
$>81.2$ |
95 |
7 |
|
L3 |
$>81$ |
95 |
8 |
|
ALEP |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$> 300$ |
95 |
9 |
|
ATLS |
|
|
10 |
|
D0 |
$> 339$ |
95 |
11, 12 |
|
CMS |
$> 500$ |
95 |
11, 13 |
|
CMS |
$> 314$ |
95 |
14 |
|
CMS |
$> 136$ |
95 |
15 |
|
ATLS |
1
AABOUD 2019AT searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for metastable and stable ${{\mathit R}}$-hadrons. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined. No significant deviations from the expected Standard Model background are observed. Results are interpreted in terms of exclusion limits on long-lived stau in the context of GMSB models. Lower limits on the mass for direct production of staus are set at 430 GeV, see their Fig. 10 (left).
|
2
KHACHATRYAN 2016BW searched in 2.5 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with heavy stable charged particles, identified by their anomalously high energy deposits in the silicon tracker and/or long time-of-flight measurements by the muon system. No evidence for an excess over the expected background is observed. Limits are derived for pair production of tau sleptons as a function of mass, depending on their direct or inclusive production in a minimal GMSB scenario along the Snowmass Points and Slopes (SPS) line 7, see Fig. 4 and Table 7.
|
3
AAD 2015AE searched in 19.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for heavy long-lived charged particles, measured through their specific ionization energy loss in the ATLAS pixel detector or their time-of-flight in the ALTAS muon system. In the absence of an excess of events above the expected backgrounds, limits are set on stable ${{\widetilde{\mathit \tau}}}$ sleptons in various scenarios, see Figs. 5-7.
|
4
AAIJ 2015BD searched in 3.0 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 and 8 TeV for evidence of Drell-Yan pair production of long-lived ${{\widetilde{\mathit \tau}}}$ particles. No evidence for such particles is observed and 95$\%$ C.L. upper limits on the cross section of ${{\widetilde{\mathit \tau}}}$ pair production are derived, see Fig. 7. In the mGMSB, assuming the SPS7 benchmark scenario ${{\widetilde{\mathit \tau}}}$ masses between 124 and 309 GeV are excluded at 95$\%$ C.L.
|
5
ABBIENDI 2003L used ${{\mathit e}^{+}}{{\mathit e}^{-}}$ data at $\sqrt {s }$ = $130 - 209$ GeV to select events with two high momentum tracks with anomalous dE/dx. The excluded cross section is compared to the theoretical expectation as a function of the heavy particle mass in their Fig.~3. The limit improves to 98.5 GeV for ${{\widetilde{\mathit \mu}}_{{L}}}$ and ${{\widetilde{\mathit \tau}}_{{L}}}$. The bounds are valid for colorless spin 0 particles with lifetimes longer than $10^{-6}~$s. Supersedes the results from ACKERSTAFF 1998P.
|
6
ABREU 2000Q searches for the production of pairs of heavy, charged stable particles in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation at $\sqrt {\mathit s }$= $130 - 189$ GeV. The upper bound improves to 88 GeV for ${{\widetilde{\mathit \mu}}_{{L}}}$, ${{\widetilde{\mathit \tau}}_{{L}}}$. These limits include and update the results of ABREU 1998P.
|
7
ACCIARRI 1999H searched for production of pairs of back-to-back heavy charged particles at $\sqrt {\mathit s }=130 - 183$ GeV. The upper bound improves to $82.2$ GeV for ${{\widetilde{\mathit \mu}}_{{L}}}$, ${{\widetilde{\mathit \tau}}_{{L}}}$.
|
8
The BARATE 1998K mass limit improves to 82 GeV for ${{\widetilde{\mathit \mu}}_{{L}}},{{\widetilde{\mathit \tau}}_{{L}}}$. Data collected at $\sqrt {\mathit s }=161 - 184$ GeV.
|
9
AAD 2013AA searched in 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for events containing long-lived massive particles in a GMSB framework. No significant excess above the expected background was found. A 95$\%$ C.L. lower limit of 300 GeV is placed on long-lived ${{\widetilde{\mathit \tau}}}$'s in the GMSB model with ${{\mathit M}_{{mess}}}$ = 250 TeV, ${{\mathit N}_{{S}}}$ = 3, ${{\mathit \mu}}$ $>$ 0, for tan ${{\mathit \beta}}$ = $5 - 20$. The lower limit on the GMSB breaking scale ${{\mathit \Lambda}}$ was found to be $99 - 110$ TeV, for tan ${{\mathit \beta}}$ values between 5 and 40, see Fig. 4 (top). Also, directly produced long-lived sleptons, or sleptons decaying to long-lived ones, are excluded at 95$\%$ C.L. up to a ${{\widetilde{\mathit \tau}}}$ mass of 278 GeV for models with slepton splittings smaller than 50 GeV.
|
10
ABAZOV 2013B looked in 6.3 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV for charged massive long-lived particles in events with muon-like particles that have both speed and ionization energy loss inconsistent with muons produced in beam collisions. In the absence of an excess, limits are set at 95$\%$ C.L. on the production cross section of stau leptons in the mass range $100 - 300$ GeV, see their Table 20 and Fig. 23.
|
11
CHATRCHYAN 2013AB looked in 5.0 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV and in 18.8 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of ${{\widetilde{\mathit \tau}}_{{1}}}$'s. No evidence for an excess over the expected background is observed. Supersedes CHATRCHYAN 2012L.
|
12
CHATRCHYAN 2013AB limits are derived for pair production of ${{\widetilde{\mathit \tau}}_{{1}}}$ as a function of mass in minimal GMSB scenarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig. 8 and Table 7). The limit given here is valid for direct pair ${{\widetilde{\mathit \tau}}_{{1}}}$ production.
|
13
CHATRCHYAN 2013AB limits are derived for the production of ${{\widetilde{\mathit \tau}}_{{1}}}$ as a function of mass in minimal GMSB scenarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig. 8 and Table 7). The limit given here is valid for the production of ${{\widetilde{\mathit \tau}}_{{1}}}$ from both direct pair production and from the decay of heavier supersymmetric particles.
|
14
CHATRCHYAN 2012L looked in 5.0 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of ${{\widetilde{\mathit \tau}}_{{1}}}$'s. No evidence for an excess over the expected background is observed. Limits are derived for the production of ${{\widetilde{\mathit \tau}}_{{1}}}$ as a function of mass in minimal GMSB scenarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig. 3). The limit given here is valid for the production of ${{\widetilde{\mathit \tau}}_{{1}}}$ in the decay of heavier supersymmetric particles.
|
15
AAD 2011P looked in 37 pb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for events with two heavy stable particles, reconstructed in the Inner tracker and the Muon System and identified by their time of flight in the Muon System. No evidence for an excess over the SM expectation is observed. Limits on the mass are derived, see Fig. 3, for ${{\widetilde{\mathit \tau}}}$ in a GMSB scenario and for sleptons produced by electroweak processes only, in which case the limit degrades to 110 GeV.
|