${{\widetilde{\mathit \nu}}}$ (Sneutrino) mass limit

INSPIRE   PDGID:
S046SNU
The limits may depend on the number, $\mathit N({{\widetilde{\mathit \nu}}}$), of sneutrinos assumed to be degenerate in mass. Only ${{\widetilde{\mathit \nu}}_{{{L}}}}$ (not ${{\widetilde{\mathit \nu}}_{{{R}}}}$) is assumed to exist. It is possible that ${{\widetilde{\mathit \nu}}}$ could be the lightest supersymmetric particle (LSP).

We report here, but do not include in the Listings, the limits obtained from the fit of the final results obtained by the LEP Collaborations on the invisible width of the ${{\mathit Z}}~$boson ($\Delta \Gamma _{{\mathrm {inv.}}}<2.0$ MeV, LEP-SLC 2006): ${\mathit m}_{{{\widetilde{\mathit \nu}}}}>43.7$ GeV ($\mathit N({{\widetilde{\mathit \nu}}}$)=1) and ${\mathit m}_{{{\widetilde{\mathit \nu}}}}>44.7$ GeV ($\mathit N({{\widetilde{\mathit \nu}}}$)=3) .

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 2014 edition: K. Olive, $\mathit et~al.$ (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

CL% DOCUMENT ID TECN  COMMENT
$> 3900$ 95 1
AAD
2023CB
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}_{{{312}}}}$ = ${{\mathit \lambda}_{{{321}}}}$ = 0.07, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$> 2800$ 95 1
AAD
2023CB
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \lambda}_{{{313}}}}$ = 0.07, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$> 2700$ 95 1
AAD
2023CB
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$, ${{\mathit \lambda}_{{{323}}}}$ = 0.07, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$\bf{> 4200}$ 95 2
TUMASYAN
2023H
CMS 1${{\mathit e}}$ + 1${{\mathit \mu}}$, RPV ${{\mathit \nu}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}}={{\mathit \lambda}^{\,'}}$ = 0.1
$> 3700$ 95 2
TUMASYAN
2023H
CMS 1${{\mathit e}}$ + 1${{\mathit \tau}}$ , RPV ${{\mathit \nu}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \lambda}}$= ${{\mathit \lambda}^{\,'}}$ = 0.1
$> 3600$ 95 2
TUMASYAN
2023H
CMS 1${{\mathit \mu}}$ + 1 ${{\mathit \tau}}$, RPV ${{\mathit \nu}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$, ${{\mathit \lambda}}$= ${{\mathit \lambda}^{\,'}}$ = 0.1
$> 2200$ 95 2
TUMASYAN
2023H
CMS 1${{\mathit e}}$ + 1${{\mathit \mu}}$, RPV ${{\mathit \nu}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}}$= ${{\mathit \lambda}^{\,'}}$ = 0.01
$> 1600$ 95 2
TUMASYAN
2023H
CMS 1${{\mathit e}}$ + 1${{\mathit \tau}}$ , RPV ${{\mathit \nu}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \lambda}}$= ${{\mathit \lambda}^{\,'}}$ = 0.01
$> 1600$ 95 2
TUMASYAN
2023H
CMS 1${{\mathit \mu}}$ + 1 ${{\mathit \tau}}$, RPV ${{\mathit \nu}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$, ${{\mathit \lambda}}$= ${{\mathit \lambda}^{\,'}}$ = 0.01
$> 3400$ 95 3
AABOUD
2018CM
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}_{{{312}}}}$ = ${{\mathit \lambda}_{{{321}}}}$ = 0.07, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$> 2900$ 95 4
AABOUD
2018CM
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \lambda}_{{{313}}}}$ = ${{\mathit \lambda}_{{{331}}}}$ = 0.07, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$> 2600$ 95 5
AABOUD
2018CM
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$, ${{\mathit \lambda}_{{{323}}}}$ = ${{\mathit \lambda}_{{{332}}}}$ = 0.07, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$> 1060$ 95 6
AABOUD
2018Z
ATLS RPV,${}\geq{}4{{\mathit \ell}}$, ${{\mathit \lambda}_{{{12k}}}}{}\not=$0, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 600 GeV (mass-degenerate left-handed sleptons and sneutrinos of all 3 generations)
$> 780$ 95 6
AABOUD
2018Z
ATLS RPV,${}\geq{}4{{\mathit \ell}}$, ${{\mathit \lambda}_{{{i33}}}}{}\not=$0, ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}$ = 300 GeV (mass-degenerate left-handed sleptons and sneutrinos of all 3 generations)
$> 1700$ 95 7
SIRUNYAN
2018AT
CMS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}_{{{132}}}}$ = ${{\mathit \lambda}_{{{231}}}}$ = ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.01
$> 3800$ 95 7
SIRUNYAN
2018AT
CMS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}_{{{132}}}}$ = ${{\mathit \lambda}_{{{231}}}}$ = ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.1
$> 2300$ 95 8
AABOUD
2016P
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$> 2200$ 95 8
AABOUD
2016P
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$>1900$ 95 8
AABOUD
2016P
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$> 400$ 95 9
AAD
2014X
ATLS RPV, ${}\geq{}4{{\mathit \ell}^{\pm}}$, ${{\widetilde{\mathit \nu}}}$ $\rightarrow$ ${{\mathit \nu}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}{{\mathit \nu}}$
10
AAD
2011Z
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$
$\bf{>94}$ 95 11
ABDALLAH
2003M
DLPH 1${}\leq{}$tan $\beta {}\leq{}$40, ${\mathit m}_{{{\widetilde{\mathit e}}_{{{R}}}}}\text{-}{\mathit m}_{{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}}>$10~GeV
$>84$ 95 12
HEISTER
2002N
ALEP ${{\widetilde{\mathit \nu}}_{{{e}}}}$, any $\Delta \mathit m$
$\bf{>41}$ 95 13
DECAMP
1992
ALEP $\Gamma\mathrm {( {{\mathit Z}} \rightarrow invisible)}$; $\mathit N({{\widetilde{\mathit \nu}}}$)=3, model independent
• • We do not use the following data for averages, fits, limits, etc. • •
14
SIRUNYAN
2019AO
RPV, ${{\mathit \mu}^{\pm}}{{\mathit \mu}^{\pm}}$ + ${}\geq{}$2jets, ${{\mathit \lambda}_{{{211}}}^{\,'}}{}\not=$0, ${{\widetilde{\mathit \nu}}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \mu}}{{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$, ${{\widetilde{\mathit \chi}}_{{{1}}}^{\pm}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$
$> 1280$ 95 15
KHACHATRYAN
2016BE
CMS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}_{{{132}}}}$ = ${{\mathit \lambda}_{{{231}}}}$ = ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.01
$> 2300$ 95 15
KHACHATRYAN
2016BE
CMS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit \lambda}_{{{132}}}}$ = ${{\mathit \lambda}_{{{231}}}}$ = 0.07, ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.11
$>2000$ 95 16
AAD
2015O
ATLS RPV (${{\mathit e}}{{\mathit \mu}}$), ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$, $\lambda {}^{'}_{311}$ = 0.11, $\lambda _{i3k}$ = 0.07
$>1700$ 95 16
AAD
2015O
ATLS RPV (${{\mathit \tau}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$), ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$, $\lambda {}^{'}_{311}$ = 0.11, $\lambda _{i3k}$ = 0.07
17
AAD
2013AI
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \mu}}{{\mathit \tau}}$
18
AAD
2011H
ATLS RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$
19
AALTONEN
2010Z
CDF RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \mu}}{{\mathit \tau}}$
20
ABAZOV
2010M
D0 RPV, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$
$> 95$ 95 21
ABDALLAH
2004H
DLPH AMSB, ${{\mathit \mu}}$ $>$ 0
$>37.1$ 95 22
ADRIANI
1993M
L3 $\Gamma\mathrm {( {{\mathit Z}} \rightarrow invisible)}$; $\mathit N({{\widetilde{\mathit \nu}}}$)=1
$>36$ 95
ABREU
1991F
DLPH $\Gamma\mathrm {( {{\mathit Z}} \rightarrow invisible)}$; $\mathit N({{\widetilde{\mathit \nu}}}$)=1
$>31.2$ 95 23
ALEXANDER
1991F
OPAL $\Gamma\mathrm {( {{\mathit Z}} \rightarrow invisible)}$; $\mathit N({{\widetilde{\mathit \nu}}}$)=1
1  AAD 2023CB searched in 139 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for heavy particles decaying into an ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \mu}}{{\mathit \tau}}$ final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings, with decays ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$, ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$, see figures 4b, 5b, 6b.
2  TUMASYAN 2023H searched in 138 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for evidence of resonant ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ production in events with two charged leptons, ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, or ${{\mathit \mu}}{{\mathit \tau}}$. No significant excess above the Standard Model expectations is observed. Limits are set on the mass of ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ in an RPV model for resonant sneutrino production, where all RPV couplings vanish, except for those that are connected to the production and decay of the ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$, considering a SUSY mass hierarchy with ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ as the LSP. The ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ is produced resonantly through ${{\mathit \lambda}_{{{311}}}^{\,'}}$ coupling, and decays via ${{\mathit \lambda}_{{{i3k}}}}$ coupling to two leptons, see their figure 3 for couplings of 0.1 and 0.01. Exclusion limits are also shown in the plane of ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ mass and ${{\mathit \lambda}^{\,'}}$ coupling, for four values of ${{\mathit \lambda}}$ couplings, see their figure 6. In addition, limits are set on heavy ${{\mathit Z}^{\,'}}$ gauge bosons with lepton flavor violating decays, see their figure 4, and on nonresonant quantum black hole production in models with extra spatial dimensions, see their figure 5. Model-independent upper limits on the product of the cross section, the branching fraction, acceptance, and efficiency are given as well, see their figure 7.
3  AABOUD 2018CM searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for heavy particles decaying into an ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \mu}}{{\mathit \tau}}$ final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$, masses below 3.4 TeV are excluded at 95$\%$ CL, see their Figure 4(b). Upper limits on the RPV couplings $\vert {{\mathit \lambda}_{{{312}}}}\vert $ versus $\vert {{\mathit \lambda}_{{{311}}}^{\,'}}\vert $ are also performed, see their Figure 8(a-b).
4  AABOUD 2018CM searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for heavy particles decaying into an ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \mu}}{{\mathit \tau}}$ final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$, masses below 2.9 TeV are excluded at 95$\%$ CL, see their Figure 5(b). Upper limits on the RPV couplings $\vert {{\mathit \lambda}_{{{313}}}}\vert $ versus $\vert {{\mathit \lambda}_{{{311}}}^{\,'}}\vert $ are also performed, see their Figure 8(c).
5  AABOUD 2018CM searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for heavy particles decaying into an ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \mu}}{{\mathit \tau}}$ final state. No significant deviation from the expected SM background is observed. Limits are set on the mass of a stau neutrino with R-parity-violating couplings. For ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$, masses below 2.6 TeV are excluded at 95$\%$ CL, see their Figure 6(b). Upper limits on the RPV couplings $\vert {{\mathit \lambda}_{{{323}}}}\vert $ versus $\vert {{\mathit \lambda}_{{{311}}}^{\,'}}\vert $ are also performed, see their Figure 8(d).
6  AABOUD 2018Z searched in 36.1 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing four or more charged leptons (electrons, muons and up to two hadronically decaying taus). No significant deviation from the expected SM background is observed. Limits are set on the Higgsino mass in simplified models of general gauge mediated supersymmetry Tn1n1A/Tn1n1B/Tn1n1C, see their Figure 9. Limits are also set on the wino, slepton, sneutrino and gluino mass in a simplified model of NLSP pair production with R-parity violating decays of the LSP via ${{\mathit \lambda}_{{{12k}}}}$ or ${{\mathit \lambda}_{{{i33}}}}$ to charged leptons, see their Figures 7, 8.
7  SIRUNYAN 2018AT searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for heavy resonances decaying into ${{\mathit e}}{{\mathit \mu}}$ final states. No significant excess above the Standard Model expectation is observed and 95$\%$ C.L. exclusions are placed on the cross section times branching ratio for the R-parity-violating production and decay of a supersymmetric tau sneutrino, see their Fig. 3.
8  AABOUD 2016P searched in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events with different flavour dilepton pairs (${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, ${{\mathit \mu}}{{\mathit \tau}}$) from the production of ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ via an RPV ${{\mathit \lambda}_{{{311}}}^{\,'}}$ coupling and followed by a decay via ${{\mathit \lambda}_{{{312}}}}$ = ${{\mathit \lambda}_{{{321}}}}$ = 0.07 for ${{\mathit e}}{+}$ ${{\mathit \mu}}$, via ${{\mathit \lambda}_{{{313}}}}$ = ${{\mathit \lambda}_{{{331}}}}$ = 0.07 for ${{\mathit e}}{+}$ ${{\mathit \tau}}$ and via ${{\mathit \lambda}_{{{323}}}}$ = ${{\mathit \lambda}_{{{332}}}}$ = 0.07 for ${{\mathit \mu}}{+}$ ${{\mathit \tau}}$. No evidence for a dilepton resonance over the SM expectation is observed, and limits are derived on ${\mathit m}_{{{\widetilde{\mathit \nu}}}}$ at 95$\%$ CL, see their Figs. 2(b), 3(b), 4(b), and Table 3.
9  AAD 2014X searched in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for events with at least four leptons (electrons, muons, taus) in the final state. No significant excess above the Standard Model expectations is observed. Limits are set on the sneutrino mass in an R-parity violating simplified model where the decay ${{\widetilde{\mathit \nu}}}$ $\rightarrow$ ${{\mathit \nu}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, with ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\mp}}{{\mathit \nu}}$, takes place with a branching ratio of 100$\%$, see Fig. 9.
10  AAD 2011Z looked in 1.07 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for events with one electron and one muon of opposite charge from the production of ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ via an RPV ${{\mathit \lambda}^{\,'}}_{311}$ coupling and followed by a decay via ${{\mathit \lambda}}_{312}$ into ${{\mathit e}}{+}$ ${{\mathit \mu}}$. No evidence for an (${{\mathit e}}$, ${{\mathit \mu}}$) resonance over the SM expectation is observed, and a limit is derived in the plane of ${{\mathit \lambda}^{\,'}}_{311}$ versus ${\mathit m}_{{{\widetilde{\mathit \nu}}}}$ for three values of ${{\mathit \lambda}}_{312}$, see their Fig. 2. Masses ${\mathit m}_{{{\widetilde{\mathit \nu}}}}$ $<$ 1.32 (1.45) TeV are excluded for ${{\mathit \lambda}^{\,'}}_{311}$ = 0.10 and ${{\mathit \lambda}}_{312}$ = 0.05 (${{\mathit \lambda}^{\,'}}_{311}$ = 0.11 and ${{\mathit \lambda}}_{312}$ = 0.07).
11  ABDALLAH 2003M uses data from $\sqrt {s }$ = $192 - 208$ GeV to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of M$_{2}<$ 1 TeV, $\vert {{\mathit \mu}}\vert {}\leq{}$1 TeV with the ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig.~43 for the mass limits as a function of tan $\beta $. These limits update the results of ABREU 2000W.
12  HEISTER 2002N derives a bound on ${\mathit m}_{{{\widetilde{\mathit \nu}}_{{{e}}}}}$ by exploiting the mass relation between the ${{\widetilde{\mathit \nu}}_{{{e}}}}$ and ${{\widetilde{\mathit e}}}$, based on the assumption of universal GUT scale gaugino and scalar masses $\mathit m_{1/2}$ and $\mathit m_{0}$ and the search described in the ${{\widetilde{\mathit e}}}$ section. In the MSUGRA framework with radiative electroweak symmetry breaking, the limit improves to ${\mathit m}_{{{\widetilde{\mathit \nu}}_{{{e}}}}}>$130 GeV, assuming a trilinear coupling $\mathit A_{0}$=0 at the GUT scale. See Figs.$~$5 and 7 for the dependence of the limits on tan $\beta $.
13  DECAMP 1992 limit is from $\Gamma\mathrm {({\mathrm {invisible}})}/\Gamma\mathrm {({{\mathit \ell}} {{\mathit \ell}})}$ = $5.91$ $\pm0.15$ ($\mathit N_{{{\mathit \nu}}}$ = $2.97$ $\pm0.07$).
14  SIRUNYAN 2019AO searched in 35.9 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for events containing two same-sign muons and at last two jets, originating from resonant production of second-generation sleptons (${{\widetilde{\mathit \mu}}_{{{L}}}}$, ${{\widetilde{\mathit \nu}}_{{{\mu}}}}$) via the R-parity violating coupling ${{\mathit \lambda}_{{{211}}}^{\,'}}$ to quarks. No significant excess above the Standard Model expectations is observed. Upper limits on cross sections are derived in the context of two simplified models, see their Figure 4. The cross section limits are translated into limits on ${{\mathit \lambda}_{{{211}}}^{\,'}}$ for a modified CMSSM, see their Figure 5.
15  KHACHATRYAN 2016BE searched in 19.7 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for evidence of narrow resonances decaying into ${{\mathit e}}{{\mathit \mu}}$ final states. No significant excess above the Standard Model expectation is observed and 95$\%$ C.L. exclusions are placed on the cross section times branching ratio for the production of an R-parity-violating supersymmetric tau sneutrino, see their Fig. 3.
16  AAD 2015O searched in 20.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for evidence of heavy particles decaying into ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$ or ${{\mathit \mu}}{{\mathit \tau}}$ final states. No significant excess above the Standard Model expectation is observed, and 95$\%$ C.L. exclusions are placed on the cross section times branching ratio for the production of an $\mathit R$-parity-violating supersymmetric tau sneutrino, applicable to any sneutrino flavour, see their Fig. 2.
17  AAD 2013AI searched in 4.6 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for evidence of heavy particles decaying into ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$ or ${{\mathit \mu}}{{\mathit \tau}}$ final states. No significant excess above the Standard Model expectation is observed, and 95$\%$ C.L. exclusions are placed on the cross section times branching ratio for the production of an R-parity-violating supersymmetric tau sneutrino, see their Fig. 2. For couplings ${{\mathit \lambda}^{\,'}}_{311}$ = 0.10 and ${{\mathit \lambda}_{{{i3k}}}}$ = 0.05, the lower limits on the ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ mass are 1610, 1110, 1100 GeV in the ${{\mathit e}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit \tau}}$, and ${{\mathit \mu}}{{\mathit \tau}}$ channels, respectively.
18  AAD 2011H looked in 35 pb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV for events with one electron and one muon of opposite charge from the production of ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ via an RPV ${{\mathit \lambda}^{\,'}}_{311}$ coupling and followed by a decay via ${{\mathit \lambda}}_{312}$ into ${{\mathit e}}{+}$ ${{\mathit \mu}}$. No evidence for an excess over the SM expectation is observed, and a limit is derived in the plane of ${{\mathit \lambda}^{\,'}}_{311}$ versus ${\mathit m}_{{{\widetilde{\mathit \nu}}}}$ for several values of ${{\mathit \lambda}}_{312}$, see their Fig. 2. Superseded by AAD 2011Z.
19  AALTONEN 2010Z searched in 1 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV for events from the production ${{\mathit d}}$ ${{\overline{\mathit d}}}$ $\rightarrow$ ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ with the subsequent decays ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$ , ${{\mathit \mu}}{{\mathit \tau}}$ , ${{\mathit e}}{{\mathit \tau}}$ in the MSSM framework with RPV. Two isolated leptons of different flavor and opposite charges are required, with ${{\mathit \tau}}$s identified by their hadronic decay. No statistically significant excesses are observed over the SM background. Upper limits on ${{\mathit \lambda}_{{{311}}}^{'2}}$ times the branching ratio are listed in their Table III for various ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ masses. Limits on the cross section times branching ratio for ${{\mathit \lambda}_{{{311}}}^{\,'}}$ = 0.10 and ${{\mathit \lambda}_{{{i3k}}}}$ = 0.05, displayed in Fig. 2, are used to set limits on the ${{\widetilde{\mathit \nu}}_{{{\tau}}}}$ mass of 558 GeV for the ${{\mathit e}}{{\mathit \mu}}$, 441 GeV for the ${{\mathit \mu}}{{\mathit \tau}}$ and 442 GeV for the ${{\mathit e}}{{\mathit \tau}}$ channels.
20  ABAZOV 2010M looked in 5.3 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV for events with exactly one pair of high ${{\mathit p}_{{{T}}}}$ isolated ${{\mathit e}}{{\mathit \mu}}$ and a veto against hard jets. No evidence for an excess over the SM expectation is observed, and a limit at 95$\%$ C.L. on the cross section times branching ratio is derived, see their Fig. 3. These limits are translated into limits on couplings as a function of ${\mathit m}_{{{\widetilde{\mathit \nu}}_{{{\tau}}}}}$ as shown on their Fig. 4. As an example, for ${\mathit m}_{{{\widetilde{\mathit \nu}}_{{{\tau}}}}}$ = 100 GeV and ${{\mathit \lambda}_{{{312}}}}{}\leq{}$ 0.07, couplings ${{\mathit \lambda}_{{{311}}}^{\,'}}$ $>$ $7.7 \times 10^{-4}$ are excluded.
21  ABDALLAH 2004H use data from LEP~1 and $\sqrt {s }$ = $192 - 208$~GeV. They re-use results or re-analyze the data from ABDALLAH 2003M to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region 1$<{{\mathit m}}_{3/2}<$50~TeV, 0$<{{\mathit m}_{{{0}}}}<$1000~GeV, 1.5$<$tan ${{\mathit \beta}}<$35, both signs of ${{\mathit \mu}}$. The constraints are obtained from the searches for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM ${{\mathit Z}}$ width of 3.2~MeV. The limit is for ${\mathit m}_{{{\mathit t}}}$ = 174.3~GeV (see Table 2 for other ${\mathit m}_{{{\mathit t}}}$ values). The limit improves to 114 GeV for ${{\mathit \mu}}$ $<$ 0.
22  ADRIANI 1993M limit from $\Delta \Gamma\mathrm {({{\mathit Z}})}$(invisible)$<16.2$ MeV.
23  ALEXANDER 1991F limit is for one species of ${{\widetilde{\mathit \nu}}}$ and is derived from $\Gamma $(invisible, new)$/\Gamma\mathrm {({{\mathit \ell}} {{\mathit \ell}})}$ $<~0.38$.
References