SCALE LIMITS for Contact Interactions: $\Lambda\mathrm {({{\mathit e}} {{\mathit e}} {{\mathit q}} {{\mathit q}})}$

INSPIRE   PDGID:
S054CTH
Limits are for $\Lambda_{LL}^{\pm}$ only. For other cases, see each reference.
$\Lambda_{LL}^+({\mathrm {TeV}}$) $\Lambda_{LL}^-({\mathrm {TeV}}$) CL% DOCUMENT ID TECN  COMMENT
$ \bf{>24} $ >37 95 1
AABOUD
2017AT
ATLS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 8.4 $ $\mathbf {>10.2}$ 95 2
ABDALLAH
2009
DLPH (${{\mathit e}}{{\mathit e}}{{\mathit b}}{{\mathit b}}$)
$ \bf{> 9.4} $ >5.6 95 3
SCHAEL
2007A
ALEP (${{\mathit e}}{{\mathit e}}{{\mathit c}}{{\mathit c}}$)
$ \mathbf { > 9.4} $ >4.9 95 2
SCHAEL
2007A
ALEP (${{\mathit e}}{{\mathit e}}{{\mathit b}}{{\mathit b}}$)
$ \bf{>23.3} $ >12.5 95 4
CHEUNG
2001B
RVUE (${{\mathit e}}{{\mathit e}}{{\mathit u}}{{\mathit u}}$)
$ \bf{>11.1} $ >26.4 95 4
CHEUNG
2001B
RVUE (${{\mathit e}}{{\mathit e}}{{\mathit d}}{{\mathit d}}$)
• • We do not use the following data for averages, fits, limits, etc. • •
$ > 7.1 $ > 7.1 95 5
AAD
2021AU
ATLS (${{\mathit e}}{{\mathit e}}{{\mathit b}}{{\mathit s}}$)
$ > 23.5 $ > 26.1 95 6
AAD
2021Q
ATLS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 19.5 $ > 24.0 95 7
SIRUNYAN
2021N
CMS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ >23.5 $ >26.1 95 8
AAD
2020AP
ATLS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 4.5 $ > 12.8 95 9
ABRAMOWICZ
2019
ZEUS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ >16.8 $ > 23.9 95 10
SIRUNYAN
2019AC
CMS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 15.5 $ > 19.5 95 11
AABOUD
2016U
ATLS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 13.5 $ >18.3 95 12
KHACHATRYAN
2015AE
CMS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 16.4 $ > 20.7 95 13
AAD
2014BE
ATLS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 9.5 $ > 12.1 95 14
AAD
2013E
ATLS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 10.1 $ > 9.4 95 15
AAD
2012AB
ATLS (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 4.2 $ > 4.0 95 16
AARON
2011C
H1 (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 3.8 $ > 3.8 95 17
ABDALLAH
2011
DLPH (${{\mathit e}}{{\mathit e}}{{\mathit t}}{{\mathit c}}$)
$ > 12.9 $ > 7.2 95 18
SCHAEL
2007A
ALEP (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
$ > 3.7 $ > 5.9 95 19
ABULENCIA
2006L
CDF (${{\mathit e}}{{\mathit e}}{{\mathit q}}{{\mathit q}}$)
1  AABOUD 2017AT limits are from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit uses a uniform positive prior in 1/${{\mathit \Lambda}^{2}}$.
2  ABDALLAH 2009 and SCHAEL 2007A limits are from $\mathit R_{b}$, $\mathit A{}^{b}_{FB}$.
3  SCHAEL 2007A limits are from $\mathit R_{c}$, $\mathit Q{}^{depl}_{FB}$, and hadronic cross section measurements.
4  CHEUNG 2001B is an update of BARGER 1998E.
5  AAD 2021AU search for new phenomena in final states with ${{\mathit e}^{+}}{{\mathit e}^{-}}$ and one or no ${{\mathit b}}$-tagged jets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limits assume ${{\mathit g}_{{{*}}}^{2}}$ = 4 $\pi $.
6  AAD 2021Q limits are from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. A frequentist statistical framework is used to remove the prior dependence.
7  SIRUNYAN 2021N limits are from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ mass distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
8  AAD 2020AP limits are from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ mass distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
9  ABRAMOWICZ 2019 limits are from Q${}^{2}$ spectrum measurements of ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit X}}$.
10  SIRUNYAN 2019AC limits are from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ mass distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
11  AABOUD 2016U limits are from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit uses a uniform positive prior in 1/${{\mathit \Lambda}^{2}}$.
12  KHACHATRYAN 2015AE limit is from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ mass distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV.
13  AAD 2014BE limits are from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The quoted limit uses a uniform positive prior in 1/${{\mathit \Lambda}^{2}}$.
14  AAD 2013E limis are from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ mass distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV.
15  AAD 2012AB limis are from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ mass distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV.
16  AARON 2011C limits are from ${{\mathit Q}^{2}}$ spectrum measurements of ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit X}}$.
17  ABDALLAH 2011 limit is from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit c}}}$ cross section. ${{\mathit \Lambda}_{{{LL}}}}$ = ${{\mathit \Lambda}_{{{LR}}}}$ = ${{\mathit \Lambda}_{{{RL}}}}$ = ${{\mathit \Lambda}_{{{RR}}}}$ is assumed.
18  SCHAEL 2007A limit assumes quark flavor universality of the contact interactions.
19  ABULENCIA 2006L limits are from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
References