$\bf{>3.10}$ |
90 |
1 |
|
SPEC |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$>3.8$ |
|
2 |
|
RVUE |
$>8.1$ |
|
2 |
|
RVUE |
$>4.1$ |
|
3 |
|
RVUE |
$>6.5$ |
|
3 |
|
RVUE |
1
JODIDIO 1986 limit is from ${{\mathit \mu}^{+}}$ $\rightarrow$ ${{\overline{\mathit \nu}}_{{\mu}}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$ . Chirality invariant interactions $\mathit L$ = ($\mathit g{}^{2}/\Lambda {}^{2}$) $\lbrack{}{{\mathit \eta}}_{\mathit LL}$ (${{\overline{\mathit \nu}}_{{ {{\mathit \mu}} {{\mathit L}} }}}{{\mathit \gamma}}{}^{\alpha }{{\mathit \mu}_{{L}}}$) (${{\overline{\mathit e}}_{{L}}}{{\mathit \gamma}}_{\alpha }{{\mathit \nu}_{{ {{\mathit e}} {{\mathit L}} }}}$) $+$ ${{\mathit \eta}_{{LR}}}$ (${{\overline{\mathit \nu}}_{{ {{\mathit \mu}} {{\mathit L}} }}}{{\mathit \gamma}}{}^{\alpha }{{\mathit \nu}_{{ {{\mathit e}} {{\mathit L}} }}}$ (${{\overline{\mathit e}}_{{R}}}{{\mathit \gamma}_{{\alpha}}}{{\mathit \mu}_{{R}}})\rbrack{}$ with $\mathit g{}^{2}/4{{\mathit \pi}}$ = 1 and (${{\mathit \eta}}_{\mathit LL},{{\mathit \eta}}_{\mathit LR}$) = (0,$\pm{}$1) are taken. No limits are given for $\Lambda {}^{\pm{}}_{\mathit LL}$ with (${{\mathit \eta}}_{\mathit LL},{{\mathit \eta}}_{\mathit LR}$) = ($\pm{}$1,0). For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.
|
2
DIAZCRUZ 1994 limits are from $\Gamma\mathrm {( {{\mathit \tau}} \rightarrow {{\mathit e}} {{\mathit \nu}} {{\mathit \nu}} )}$ and assume flavor-dependent contact interactions with $\Lambda\mathrm {( {{\mathit \tau}} {{\mathit \nu}_{{\tau}}} {{\mathit e}} {{\mathit \nu}_{{e}}} )}{}\ll\Lambda\mathrm {( {{\mathit \mu}} {{\mathit \nu}_{{\mu}}} {{\mathit e}} {{\mathit \nu}_{{e}}} )}$.
|
3
DIAZCRUZ 1994 limits are from $\Gamma\mathrm {( {{\mathit \tau}} \rightarrow {{\mathit \mu}} {{\mathit \nu}} {{\mathit \nu}} )}$ and assume flavor-dependent contact interactions with $\Lambda\mathrm {( {{\mathit \tau}} {{\mathit \nu}_{{\tau}}} {{\mathit \mu}} {{\mathit \nu}_{{\mu}}} )}{}\ll\Lambda\mathrm {( {{\mathit \mu}} {{\mathit \nu}_{{\mu}}} {{\mathit e}} {{\mathit \nu}_{{e}}} )}$.
|
|