• • • We do not use the following data for averages, fits, limits, etc. • • • |
|
1 |
|
ATLS |
|
2 |
|
CMS |
|
3 |
|
BES3 |
|
4 |
|
CMS |
|
5 |
|
BABR |
|
6 |
|
BABR |
|
7 |
|
BABR |
|
8 |
|
BABR |
|
9 |
|
BES3 |
|
10 |
|
CMS |
|
11 |
|
CDF |
|
12, 13 |
|
KTEV |
|
14 |
|
BABR |
|
15 |
|
BABR |
|
16 |
|
RVUE |
|
17, 13 |
|
BELL |
|
18, 13 |
|
BELL |
|
19 |
|
BABR |
|
20 |
|
BABR |
|
21 |
|
BABR |
|
22, 13 |
|
K391 |
|
23 |
|
CLEO |
|
24 |
|
CLEO |
|
25 |
|
HYCP |
|
26 |
|
CLE2 |
|
27 |
|
CBAL |
1
AABOUD 2018AP search for the decay ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10(b) for limits on B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ ) in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $1 - 2.5$, $4.5 - 8$ GeV, assuming a type-II two-doublet plus singlet model with tan $(\beta )$ = 5.
|
2
KHACHATRYAN 2017AZ search for the decay ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ , and ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Figs. 4, 5, and 6 for cross section limits in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $5 - 62.5$ GeV. See also their Figs. 7, 8, and 9 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
|
3
ABLIKIM 2016E search for the process ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ with ${{\mathit A}^{0}}$ decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and give limits on B( ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) in the range $2.8 \times 10^{-8} - 5.0 \times 10^{-6}$ (90$\%$ CL) for 0.212 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 3.0 GeV. See their Fig. 5.
|
4
KHACHATRYAN 2016F search for the decay ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}$ ${{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 8 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $4 - 8$ GeV.
|
5
LEES 2015H search for the process ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ with ${{\mathit A}^{0}}$ decaying to ${{\mathit c}}{{\overline{\mathit c}}}$ and give limits on B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ ) in the range $7.4 - 2.4$ (90$\%$ CL) for 4.00 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 8.95 and 9.10 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 9.25 GeV. See their Fig. 6.
|
6
LEES 2013C search for the process ${{\mathit \Upsilon}}$(2S, 3S) $\rightarrow$ ${{\mathit \Upsilon}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ with ${{\mathit A}^{0}}$ decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and give limits on B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) in the range ($0.3 - 9.7){\times }10^{-6}$ (90$\%$ CL) for 0.212 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 9.20 GeV. See their Fig. 5(e) for limits on the ${{\mathit b}}−{{\mathit A}^{0}}$ Yukawa coupling derived by combining this result with AUBERT 2009Z.
|
7
LEES 2013L search for the process ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ with ${{\mathit A}^{0}}$ decaying to ${{\mathit g}}{{\mathit g}}$ or ${{\mathit s}}{{\overline{\mathit s}}}$ and give limits on B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit g}}{{\mathit g}}$ ) between $1 \times 10^{-6}$ and $0.02$ (90$\%$ CL) for 0.5 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 9.0 GeV, and B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit s}}{{\overline{\mathit s}}}$ ) between $4 \times 10^{-6}$ and $1 \times 10^{-3}$ (90$\%$CL) for 1.5 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 9.0 GeV. See their Fig. 4.
|
8
LEES 2013R search for the process ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ with ${{\mathit A}^{0}}$ decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ and give limits on B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ ) in the range $0.9 - 13$ (90$\%$ CL) for 3.6 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 9.2 GeV. See their Fig. 4 for limits on the ${{\mathit b}}−{{\mathit A}^{0}}$ Yukawa coupling derived by combining this result with AUBERT 2009P.
|
9
ABLIKIM 2012 searches for the process ${{\mathit \psi}{(3686)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}{{\mathit J / \psi}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ with ${{\mathit A}^{0}}$ decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ . It gives mass dependent limits on B( ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) in the range $4 \times 10^{-7} - 2.1 \times 10^{-5}$ (90$\%$ C.L.) for 0.212 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 3.0 GeV. See their Fig. 2.
|
10
CHATRCHYAN 2012V search for ${{\mathit A}^{0}}$ production in the decay ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ with 1.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. A limit on $\sigma ({{\mathit A}^{0}})\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) in the range ($1.5 - 7.5$) pb is given for ${\mathit m}_{{{\mathit A}^{0}}}$ = ($5.5 - 8.7$) and ($11.5 - 14$) GeV at 95$\%$ CL.
|
11
AALTONEN 2011P search in 2.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV for the decay chain ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ with ${\mathit m}_{{{\mathit A}^{0}}}$ between 4 and 9 GeV. See their Fig.$~$4 for limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) for 90 $<$ ${\mathit m}_{{{\mathit H}^{+}}}<$ 160 GeV.
|
12
ABOUZAID 2011A search for the decay chain ${{\mathit K}_{{L}}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and give a limit B( ${{\mathit K}_{{L}}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit A}^{0}}$ ) $\cdot{}$ B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) $<$ $1.0 \times 10^{-10}$ at 90$\%$ CL for ${\mathit m}_{{{\mathit A}^{0}}}$ = 214.3 MeV.
|
13
The search was motivated by PARK 2005 .
|
14
DEL-AMO-SANCHEZ 2011J search for the process ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ with ${{\mathit A}^{0}}$ decaying to invisible final states. They give limits on B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ invisible) in the range ($1.9 - 4.5){\times }10^{-6}$ (90$\%$ CL) for 0 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 8.0 GeV, and ($2.7 - 37){\times }10^{-6}$ for 8.0 ${}\leq{}{\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 9.2 GeV.
|
15
LEES 2011H search for the process ${{\mathit \Upsilon}{(2S,3S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ with ${{\mathit A}^{0}}$ decaying hadronically and give limits on B( ${{\mathit \Upsilon}{(2S,3S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ hadrons) in the range $1 \times 10^{-6} - 8 \times 10^{-5}$ (90$\%$ CL) for 0.3 $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 7 GeV. The decay rates for ${{\mathit \Upsilon}{(2S)}}$ and ${{\mathit \Upsilon}{(3S)}}$ are assumed to be equal up to the phase space factor. See their Fig. 5.
|
16
ANDREAS 2010 analyze constraints from rare decays and other processes on a light ${{\mathit A}^{0}}$ with ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 2${\mathit m}_{{{\mathit \mu}}}$ and give limits on its coupling to fermions at the level of $10^{-4}$ times the Standard Model value.
|
17
HYUN 2010 search for the decay chain ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*0}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and give a limit on B( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*0}}{{\mathit A}^{0}}$ ) $\cdot{}$ B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) in the range ($2.26 - 5.53){\times }10^{-8}$ at 90$\%$CL for ${\mathit m}_{{{\mathit A}^{0}}}$ = $212 - 300$ MeV. The limit for ${\mathit m}_{{{\mathit A}^{0}}}$ = 214.3 MeV is $2.26 \times 10^{-8}$.
|
18
HYUN 2010 search for the decay chain ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and give a limit on B( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit A}^{0}}$ ) $\cdot{}$ B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) in the range ($1.73 - 4.51){\times }10^{-8}$ at 90$\%$CL for ${\mathit m}_{{{\mathit A}^{0}}}$ = $212 - 300$ MeV. The limit for ${\mathit m}_{{{\mathit A}^{0}}}$ = 214.3 MeV is $1.73 \times 10^{-8}$.
|
19
AUBERT 2009P search for the process ${{\mathit \Upsilon}{(3S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ for 4.03 $<$ ${\mathit m}_{{{\mathit A}^{0}}}<$ 9.52 and 9.61 $<$ ${\mathit m}_{{{\mathit A}^{0}}}<$ 10.10 GeV, and give limits on B( ${{\mathit \Upsilon}{(3S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ ) in the range ($1.5 - 16){\times }10^{-5}$ (90$\%$ CL).
|
20
AUBERT 2009Z search for the process ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ for 0.212 $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 9.3 GeV and give limits on B( ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) in the range ($0.3 - 8){\times }10^{-6}$ (90$\%$ CL).
|
21
AUBERT 2009Z search for the process ${{\mathit \Upsilon}{(3S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ for 0.212 $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 9.3 GeV and give limits on B( ${{\mathit \Upsilon}{(3S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) in the range ($0.3 - 5){\times }10^{-6}$ (90$\%$ CL).
|
22
TUNG 2009 search for the decay chain ${{\mathit K}_{{L}}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ and give a limit on B( ${{\mathit K}_{{L}}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit A}^{0}}$ ) $\cdot{}$ B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ) in the range ($2.4 - 10.7){\times }10^{-7}$ at 90$\%$CL for ${\mathit m}_{{{\mathit A}^{0}}}$ = $194.3 - 219.3$ MeV. The limit for ${\mathit m}_{{{\mathit A}^{0}}}$ = 214.3 MeV is $2.4 \times 10^{-7}$.
|
23
LOVE 2008 search for the process ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ (for ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 2${\mathit m}_{{{\mathit \tau}}}$) and ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ . Limits on B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ) $\cdot{}$ B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ ) in the range $10^{-6} - 10^{-4}$ (90$\%$ CL) are given.
|
24
BESSON 2007 give a limit B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit \eta}_{{b}}}{{\mathit \gamma}}$ ) $\cdot{}$ B( ${{\mathit \eta}_{{b}}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ ) $<$ 0.27$\%$ (95$\%$ CL), which constrains a possible ${{\mathit A}^{0}}$ exchange contribution to the ${{\mathit \eta}_{{b}}}$ decay.
|
25
PARK 2005 found three candidate events for ${{\mathit \Sigma}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in the HyperCP experiment. Due to a narrow spread in dimuon mass, they hypothesize the events as a possible signal of a new boson. It can be interpreted as a neutral particle with ${\mathit m}_{{{\mathit A}^{0}}}$ = $214.3$ $\pm0.5~$MeV and the branching fraction B( ${{\mathit \Sigma}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit A}^{0}}$ )$\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) = ($3.1$ ${}^{+2.4}_{-1.9}$ $\pm1.5){\times }10^{-8}$.
|
26
BALEST 1995 give limits B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ) < $1.5 \times 10^{-5}$ at 90$\%$ CL for ${\mathit m}_{{{\mathit A}^{0}}}<$ 5 GeV. The limit becomes $<10^{-4}$ for ${\mathit m}_{{{\mathit A}^{0}}}$ $<7.7$ GeV.
|
27
ANTREASYAN 1990C give limits B( ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ) < $5.6 \times 10^{-5}$ at 90$\%$ CL for ${\mathit m}_{{{\mathit A}^{0}}}<$ 7.2 GeV. ${{\mathit A}^{0}}$ is assumed not to decay in the detector.
|