MASS LIMITS FOR NEUTRAL HIGGS BOSONS IN EXTENDED HIGGS MODELS

This Section covers models which do not fit into either the Standard Model or its simplest minimal Supersymmetric extension (MSSM), leading to anomalous production rates, or nonstandard final states and branching ratios. In particular, this Section covers limits which may apply to generic two-Higgs-doublet models (2HDM), or to special regions of the MSSM parameter space where decays to invisible particles or to photon pairs are dominant (see the review on “Status of Higgs Boson Physics''). Concerning the mass limits for ${{\mathit H}^{0}}$ and ${{\mathit A}^{0}}$ listed below, see the footnotes or the comment lines for details on the nature of the models to which the limits apply.
The observed signal at about 125 GeV, see section “${{\mathit H}}$'', can be interpreted as one of the neutral Higgs bosons of an extended Higgs sector.

Other Mass Limits

INSPIRE   PDGID:
S055H2O
We use a symbol ${{\mathit H}_{{{1}}}^{0}}$ if mass $<$ 125 GeV or ${{\mathit H}_{{{2}}}^{0}}$ if mass $>$ 125 GeV. The notation ${{\mathit H}}$ is reserved for the 125 GeV particle.

VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
1
AAD
2024A
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
2
AAD
2023AD
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
3
AAD
2023AD
ATLS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}{{\mathit H}}$
4
AAD
2023AJ
ATLS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit A}^{0}}$
5
AAD
2023BD
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit q}}{{\mathit H}_{{{{1,2}}}}^{0}}$
6
AAD
2023BE
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$
7
AAD
2023BG
ATLS ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}_{{{2}}}^{0}}/{{\mathit A}^{0}}$
8
AAD
2023BW
ATLS ${{\mathit A}^{0}}{{\mathit t}}{{\overline{\mathit t}}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
9
AAD
2023BX
ATLS ${{\mathit H}}$ + invisible ${{\mathit A}^{0}}$
10
AAD
2023CA
ATLS ${{\mathit H}_{{{3}}}^{0}}$ $\rightarrow$ ${{\mathit H}_{{{2}}}^{0}}{{\mathit H}}$
11
AAD
2023CR
ATLS flavor changing ${{\mathit H}_{{{2}}}^{0}}$
12
AAD
2023O
ATLS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
13
AAD
2023R
ATLS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
14
AAD
2023U
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
15
AAD
2023Z
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
16
HAYRAPETYAN
2023C
CMS ${{\mathit H}_{{{{1,2}}}}^{0}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$
17
HAYRAPETYAN
2023G
CMS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
18
TUMASYAN
2023
CMS ${{\mathit H}_{{{3}}}^{0}}$ $\rightarrow$ ${{\mathit H}_{{{{1,2}}}}^{0}}{{\mathit H}}$
19
TUMASYAN
2023M
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
20
TUMASYAN
2023O
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
21
TUMASYAN
2023S
CMS ${{\mathit H}_{{{{1,2}}}}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$
22
AAD
2022A
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
23
AAD
2022D
ATLS ${{\mathit Z}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ invisible
24
AAD
2022F
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
25
AAD
2022I
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ , ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
26
AAD
2022J
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit A}^{0}}$
27
AAD
2022J
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ , ${{\mathit H}_{{{1}}}^{0}}{{\mathit H}_{{{1}}}^{0}}$
28
AAD
2022P
ATLS ${{\mathit H}_{{{1}}}^{0}}$ , ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ invisible
29
AAD
2022Y
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
30
ABRATENKO
2022A
MCBN ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit \pi}^{+}}$
31
TUMASYAN
2022AK
CMS ${{\mathit H}_{{{3}}}^{0}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit H}_{{{1}}}^{0}}$
32
TUMASYAN
2022D
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$
33
AAD
2021AF
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
34
AAD
2021AI
ATLS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}_{{{2}}}^{0}}$
35
AAD
2021AY
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
36
AAD
2021AZ
ATLS ${{\mathit A}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit A}_{{{1}}}^{0}}$
37
AAD
2021BB
ATLS ${{\mathit A}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit A}_{{{1}}}^{0}}$
38
AAD
2021BE
ATLS ${{\mathit A}_{{{1}}}^{0}}$ $\rightarrow$ invisible
39
ABRATENKO
2021
MCBN ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit \pi}^{+}}$
40
SIRUNYAN
2021A
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ invisible
41
TUMASYAN
2021F
CMS ${{\mathit H}_{{{3}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}_{{{1,2}}}^{0}}$
42
AAD
2020AA
ATLS ${{\mathit H}_{{{2}}}^{0}}$/ ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$
43
AAD
2020AI
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
44
AAD
2020AO
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
45
AAD
2020C
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
46
AAD
2020L
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
47
AAD
2020X
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
48
AAIJ
2020AL
LHCB ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
49
SIRUNYAN
2020
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
50
SIRUNYAN
2020AA
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit A}^{0}}$ or ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}_{{{2}}}^{0}}$
51
SIRUNYAN
2020AC
CMS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
52
SIRUNYAN
2020AD
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$ , ${{\mathit e}}{{\mathit \tau}}$
53
SIRUNYAN
2020AF
CMS ${{\mathit H}_{{{2}}}^{0}}$/ ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
54
SIRUNYAN
2020AP
CMS ${{\mathit H}}$, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
55
SIRUNYAN
2020Y
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$
56
SIRUNYAN
2020Z
CMS ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}_{{{{1,2}}}}^{0}}$ or ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit A}^{0}}$, ${{\mathit H}_{{{{1,2}}}}^{0}}$/ ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
57
AABOUD
2019A
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
58
AABOUD
2019AG
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
59
AABOUD
2019O
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
60
AABOUD
2019T
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
61
AABOUD
2019V
ATLS two doublet + pseudoscalar model
62
AABOUD
2019Y
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
63
AALTONEN
2019
CDF ${{\mathit H}_{{{{1,2}}}}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
64
SIRUNYAN
2019
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
65
SIRUNYAN
2019AE
CMS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$
66
SIRUNYAN
2019AN
CMS ${{\mathit A}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit A}_{{{1}}}^{0}}$
67
SIRUNYAN
2019AV
CMS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
68
SIRUNYAN
2019B
CMS ${{\mathit H}_{{{1,2}}}^{0}}$ $/$ ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
69
SIRUNYAN
2019BB
CMS ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
70
SIRUNYAN
2019BD
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
71
SIRUNYAN
2019BE
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
72
SIRUNYAN
2019BQ
CMS ${{\mathit H}_{{{{1,2}}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
73
SIRUNYAN
2019CR
CMS ${{\mathit H}_{{{2}}}^{0}}$ $/$ ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
74
SIRUNYAN
2019H
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
75
AABOUD
2018AA
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
76
AABOUD
2018AG
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
77
AABOUD
2018AH
ATLS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}_{{{2}}}^{0}}$
78
AABOUD
2018AI
ATLS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
79
AABOUD
2018BF
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
80
AABOUD
2018BU
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
81
AABOUD
2018BX
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
82
AABOUD
2018CQ
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
83
AABOUD
2018F
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$, ${{\mathit Z}}{{\mathit Z}}$
84
AAIJ
2018AM
LHCB ${{\mathit H}_{{{{1,2}}}}^{0}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$
85
AAIJ
2018AQ
LHCB ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
86
AAIJ
2018AQ
LHCB ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
87
SIRUNYAN
2018AF
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
88
SIRUNYAN
2018BA
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
89
SIRUNYAN
2018CW
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
90
SIRUNYAN
2018DK
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
91
SIRUNYAN
2018DT
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
92
SIRUNYAN
2018DU
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
93
SIRUNYAN
2018ED
CMS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
94
SIRUNYAN
2018EE
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
95
SIRUNYAN
2018F
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
96
AABOUD
2017
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
97
AABOUD
2017AP
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
98
AABOUD
2017AW
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
99
KHACHATRYAN
2017AZ
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
100
KHACHATRYAN
2017D
CMS ${{\mathit p}}{{\mathit p}}$, 8, 13 TeV, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
101
KHACHATRYAN
2017R
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
102
SIRUNYAN
2017CN
CMS ${{\mathit p}}{{\mathit p}}$, 8 TeV, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
103
SIRUNYAN
2017Y
CMS ${{\mathit p}}{{\mathit p}}$, 8, 13 TeV, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
104
AABOUD
2016AB
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
105
AABOUD
2016AE
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$, ${{\mathit Z}}{{\mathit Z}}$
106
AABOUD
2016H
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
107
AABOUD
2016I
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
108
AAD
2016AX
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
109
AAD
2016C
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$
110
AAD
2016L
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
111
AAD
2016L
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
112
AALTONEN
2016C
CDF ${{\mathit H}_{{{1}}}^{0}}$ ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit H}_{{{1}}}^{0}}{{\mathit W}^{*}}$, ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
113
KHACHATRYAN
2016BG
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
114
KHACHATRYAN
2016BQ
CMS ${{\mathit p}}{{\mathit p}}$, 8 TeV, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
115
KHACHATRYAN
2016F
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}}{{\mathit H}_{{{1}}}}$
116
KHACHATRYAN
2016M
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
117
KHACHATRYAN
2016P
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
118
KHACHATRYAN
2016P
CMS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
119
AAD
2015BK
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
120
AAD
2015BZ
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
121
AAD
2015BZ
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
122
AAD
2015CE
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
123
AAD
2015H
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
124
AAD
2015S
ATLS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
125
KHACHATRYAN
2015AW
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$, ${{\mathit Z}}{{\mathit Z}}$
126
KHACHATRYAN
2015BB
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
127
KHACHATRYAN
2015N
CMS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
128
KHACHATRYAN
2015O
CMS ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
129
KHACHATRYAN
2015R
CMS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
130
AAD
2014AP
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
131
AAD
2014M
ATLS ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}^{\pm}}{{\mathit W}^{\mp}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
132
CHATRCHYAN
2014G
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{(*)}}$
133
KHACHATRYAN
2014P
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
134
AALTONEN
2013P
CDF ${{\mathit H}^{'0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}^{+}}{{\mathit W}^{-}}$
135
CHATRCHYAN
2013BJ
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
136
AALTONEN
2011P
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$
137
ABBIENDI
2010
OPAL ${{\mathit H}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$
138
SCHAEL
2010
ALEP ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
139
ABAZOV
2009V
D0 ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
$\text{none 3 - 63}$ 95 140
ABBIENDI
2005A
OPAL ${{\mathit A}^{0}}$, Type II model
$>104$ 95 141
ABBIENDI
2004K
OPAL ${{\mathit H}}$ $\rightarrow$ 2 jets
142
ABDALLAH
2004
DLPH ${{\mathit H}}{{\mathit V}}{{\mathit V}}$ couplings
$>110.3$ 95 143
ACHARD
2004B
L3 ${{\mathit H}}$ $\rightarrow$ 2 jets
144
ACHARD
2004F
L3 Anomalous coupling
145
ABBIENDI
2003F
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$, ${{\mathit H}}$ $\rightarrow$ any
146
ABBIENDI
2003G
OPAL ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$
$>105.4$ 95 147, 148
HEISTER
2002L
ALEP ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$>109.1$ 95 149
HEISTER
2002M
ALEP ${{\mathit H}}$ $\rightarrow$ 2 jets or ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$
$\text{none 12 - 56}$ 95 150
ABBIENDI
2001E
OPAL ${{\mathit A}^{0}}$, Type-II model
151
ACCIARRI
2000R
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$ and/or ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
152
ACCIARRI
2000R
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit H}}$
153
GONZALEZ-GARC..
1998B
RVUE Anomalous coupling
154
KRAWCZYK
1997
RVUE ($\mathit g-2)_{{{\mathit \mu}}}$
155
ALEXANDER
1996H
OPAL ${{\mathit Z}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$
1  AAD 2024A search for the decay ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$ with ${{\mathit Z}}$ decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ using 140 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for limits on production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.22 - 3.4$ TeV.
2  AAD 2023AD search for associated production of ${{\mathit W}}/{{\mathit Z}}{{\mathit H}_{{{2}}}^{0}}$ with the decay chain ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 1000$ GeV.
3  AAD 2023AD search for gluon fusion production of ${{\mathit A}^{0}}$ with the decay chain ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}_{{{2}}}^{0}}$, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $350 - 800$ GeV and ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 400$ GeV.
4  AAD 2023AJ search for production of ${{\mathit H}^{\pm}}$ in association with a top quark, followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ invisible, using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10 for excluded parameter regions of 2HDM + $\mathit CP$-odd singlet model.
5  AAD 2023BD search for a top quark decaying to ${{\mathit q}}{{\mathit H}_{{{{1,2}}}}^{0}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit c}}$), ${{\mathit H}_{{{{1,2}}}}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9 for limits on production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{{1,2}}}}^{0}}}$ = $20 - 160$ GeV.
6  AAD 2023BE search for associated production of ${{\mathit H}_{{{2}}}^{0}}{{\mathit W}}$ and decay ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$ assuming the presence of higher dimensional ${{\mathit H}_{{{2}}}^{0}}{{\mathit W}^{+}}{{\mathit W}^{-}}$ interactions, using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for excluded parameter region of higher dimensional operators, and Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.3 - 1.5$ TeV.
7  AAD 2023BG search for production of ${{\mathit H}_{{{2}}}^{0}}/{{\mathit A}^{0}}$ in association with a ${{\mathit t}}{{\overline{\mathit t}}}$ pair, decaying to ${{\mathit t}}{{\overline{\mathit t}}}$, using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.4 - 1.0$ TeV.
8  AAD 2023BW search for ${{\mathit A}^{0}}$ production in association with a ${{\mathit t}}{{\overline{\mathit t}}}$ pair, decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$, using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5(a) for limits on production cross section times branching ratio for ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 72$ GeV.
9  AAD 2023BX search for production of ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ with missing transverse momentum using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for interpretation of the data in terms of 2HDM + a model.
10  AAD 2023CA search for production of ${{\mathit H}_{{{3}}}^{0}}$ decaying to ${{\mathit H}_{{{2}}}^{0}}{{\mathit H}}$, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$ or ${{\mathit Z}}{{\mathit Z}}$, and ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ using 140 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 4, 5 for limits on production cross section times branching ratios in the ranges ${\mathit m}_{{{\mathit H}_{{{3}}}^{0}}}$ = $0.5 - 1.5$ TeV and ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 0.5$ TeV.
11  AAD 2023CR search for ${{\mathit H}_{{{2}}}^{0}}$ having flavor-violating couplings to ${{\mathit t}}{{\mathit c}}$ or ${{\mathit t}}{{\mathit u}}$, produced in association with top quark(s), using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 14 for limits on production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 1.5$ TeV with various assumptions on the flavor-changing couplings.
12  AAD 2023O search for production of an ${{\mathit A}^{0}}$ in gluon-gluon fusion and in association with a ${{\mathit b}}{{\overline{\mathit b}}}$, decaying to ${{\mathit Z}}{{\mathit H}}$ in the final states ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit b}}{{\overline{\mathit b}}}$ and ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.22 - 2.0$ TeV, and Fig. 11 for limits with both production components.
13  AAD 2023R search for the decay ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ in 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit A}^{0}}}$ = $10 - 70$ GeV.
14  AAD 2023U search for the decay ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$ with ${{\mathit Z}}$ decaying hadronically in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8(a) for limits on production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $1.0 - 6.8$ TeV.
15  AAD 2023Z search for the decay chain ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10 for limits on the product of production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.251 - 1.6$ TeV.
16  HAYRAPETYAN 2023C search for ${{\mathit H}_{{{{1,2}}}}^{0}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$ using 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on production cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{{1,2}}}}^{0}}}$ = $110 - 160$ GeV.
17  HAYRAPETYAN 2023G search for dimuon resonance in the mass range $1.1 - 2.6$ or $4.2 - 7.9$ GeV in 96.6 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, in inclusive and high ${{\mathit p}_{{{T}}}}$ selections. See their Fig. 5 for cross section times branching ratio limits and Fig. 7 for mixing angle limits in two Higgs doublet plus singlet model (at 90$\%$ CL).
18  TUMASYAN 2023 search for production of ${{\mathit H}_{{{3}}}^{0}}$ decaying to ${{\mathit H}_{{{{1,2}}}}^{0}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ using 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for limits on production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{3}}}^{0}}}$ = $0.9 - 4.0$ TeV and ${\mathit m}_{{{\mathit H}_{{{{1,2}}}}^{0}}}$ = $60 - 600$ GeV, and their interpretation in the NMSSM and the Two Real Singlet Model (TRSM).
19  TUMASYAN 2023M search for the decay chain ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}$ in 132 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for limits on cross section times branching ratio in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 62$ GeV.
20  TUMASYAN 2023O search for ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$, each ${{\mathit H}}$ decaying to either ${{\mathit W}}{{\mathit W}^{*}}$ or ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ using 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 14 (upper) for limit on the product of production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.25 - 1.0$ TeV.
21  TUMASYAN 2023S search for gluon fusion and ${{\mathit b}}$-associated production of ${{\mathit H}_{{{{1,2}}}}^{0}}$ decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ using 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10 for limits on production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{{1,2}}}}^{0}}}$ = $0.06 - 3.5$ TeV.
22  AAD 2022A search for the decay chain ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9 for limits on the overall branching fraction in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $16 - 62$ GeV. See also Fig. 11 for limits without assuming ${{\mathit A}^{0}}$ is pseudoscalar.
23  AAD 2022D search for ${{\mathit Z}}{{\mathit A}^{0}}$ associate production with ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit A}^{0}}$ decaying invisibly, in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for excluded regions in the mass parameter space of two Higgs doublet plus singlet (2HDM+${{\mathit A}^{0}}$) model with a certain choice of the model parameters.
24  AAD 2022F search for gluon fusion production of ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ using $126 - 139$ fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$) = 0.582 is assumed. See their Fig. 14 for limit on the product of production cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.251 - 5.0$ TeV.
25  AAD 2022I search for ${{\mathit Z}}{{\mathit H}}$ associate production with the decay chain ${{\mathit H}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, and ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 3 and 4 for limits on the product of cross section times the branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $20 - 65$ GeV with various choices of NMSSM model parameters.
26  AAD 2022J search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit A}^{0}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV assuming SM gluon-gluon fusion production of the ${{\mathit H}}$. See their Fig. 17(b) for limits on the product of cross section times the branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 30$ GeV.
27  AAD 2022J search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV assuming SM gluon-gluon fusion production of the ${{\mathit H}}$ in the range of ${\mathit m}_{{{\mathit A}^{0}}}$ = $1 - 60$ GeV . See their Fig. 14(b) for limits on the product of cross section times the branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.5 - 60$ GeV (excluding ${{\mathit \psi}}$ and ${{\mathit \Upsilon}}$ regions). The limit also applies to the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit H}_{{{1}}}^{0}}$.
28  AAD 2022P search for invisibly decaying ${{\mathit H}_{{{1}}}^{0}}$, ${{\mathit H}_{{{2}}}^{0}}$ produced by vector boson fusion in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Limit on the product of cross section times branching ratio in the range $0.1 - 1$ pb (95$\%$ CL) is given for the mass range $0.05 - 2$ TeV. See their Fig. 14.
29  AAD 2022Y search for gluon fusion production of ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 15 for limit on the product of production cross section times branching ratios to ${{\mathit H}}{{\mathit H}}$ for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.251 - 1.0$ TeV.
30  ABRATENKO 2022A search for a singlet scalar boson ${{\mathit H}_{{{1}}}^{0}}$ having a small mixing with the SM Higgs boson in the decay chain ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit \pi}^{+}}$, ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ from data corresponding to $7.01 \times 10^{20}$ protons on NuMI target. See their Fig. 13 (right) and Table V for limits on the SM Higgs component of ${{\mathit H}_{{{1}}}^{0}}$ for ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}$ = $212 - 279$ MeV.
31  TUMASYAN 2022AK search for gluon-fusion production of ${{\mathit H}_{{{3}}}^{0}}$ decaying to ${{\mathit H}_{{{1}}}^{0}}$ ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{3}}}^{0}}}$ = $1 - 3$ TeV, ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}$ = $25 - 100$ GeV.
32  TUMASYAN 2022D search for production of an ${{\mathit H}_{{{2}}}^{0}}$ (denoted radion in the paper) in gluon fusion and vector boson fusion, decaying to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ in the final states ${{\mathit \ell}}{{\mathit \nu}}$ + hadrons, using 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $1.0 - 4.5$ TeV.
33  AAD 2021AF search for production of a heavy ${{\mathit H}_{{{2}}}^{0}}$ state decaying to ${{\mathit Z}}{{\mathit Z}}$ in the final states ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \ell}^{'+}}{{\mathit \ell}^{'-}}$ and ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 2.0$ TeV assuming ggF or VBF with narrow width approximation, and Fig. 5 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.4 - 2.0$ TeV assuming ggF, and with several assumptions on its width.
34  AAD 2021AI search for production of an ${{\mathit A}^{0}}$ in gluon-gluon fusion and in association with a ${{\mathit b}}{{\overline{\mathit b}}}$, decaying to ${{\mathit Z}}$ ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ or ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit W}^{+}}{{\mathit W}^{-}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 9 and 13 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $230 - 800$ GeV and ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $130 - 700$ GeV.
35  AAD 2021AY search for production of a scalar resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5(a) for limits on fiducial cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.16 - 3$ TeV with narrow width approximation, and Table 2 with several assumptions on the width.
36  AAD 2021AZ search for production of ${{\mathit A}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}{{\mathit A}_{{{1}}}^{0}}$ followed by ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit A}_{{{1}}}^{0}}$ $\rightarrow$ invisible in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. $10 - 12$ for limits in terms of two-Higgs-doublet model plus singlet pseudoscalar and a fermionic Dark Matter particle.
37  AAD 2021BB search for production of ${{\mathit A}_{{{2}}}^{0}}$ by gluon fusion or associated ${{\mathit A}_{{{2}}}^{0}}{{\mathit b}}{{\overline{\mathit b}}}$ production, decaying to ${{\mathit H}}{{\mathit A}_{{{1}}}^{0}}$ followed by ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit A}_{{{1}}}^{0}}$ $\rightarrow$ invisible in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for limits in terms of two-Higgs-doublet plus singlet pseudoscalar model.
38  AAD 2021BE search for production of ${{\mathit A}_{{{1}}}^{0}}$ associated with a single top quark and either a light quark or a ${{\mathit W}}$ boson, decaying to invisible final states, in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. $13 - 15$ for limits in terms of two-Higgs-doublet model plus singlet pseudoscalar, which is assumed to decay to a pair of Dark Matter particles.
39  ABRATENKO 2021 search for a singlet scalar boson ${{\mathit H}_{{{1}}}^{0}}$ having a small mixing with the SM Higgs boson in the decay chain ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit \pi}^{+}}$, ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ from data corresponding to $1.93 \times 10^{20}$ protons on NuMI target. See their Fig. 2 for limits on the SM Higgs component of ${{\mathit H}_{{{1}}}^{0}}$ for ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}$ = $3 - 210$ MeV.
40  SIRUNYAN 2021A search for ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit A}^{0}}$ with ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit A}^{0}}$ decaying invisibly, in 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for excluded regions in the mass parameter space of two Higgs doublet plus singlet model with a certain choice of the model parameters.
41  TUMASYAN 2021F search for gluon fusion production of ${{\mathit H}_{{{3}}}^{0}}$ decaying to ${{\mathit H}}$ ${{\mathit H}_{{{1,2}}}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 5 and 6 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{1,2}}}^{0}}}$ = $0.06 - 2.8$ TeV and ${\mathit m}_{{{\mathit H}_{{{3}}}^{0}}}$ = $0.24 - 3.0$ TeV.
42  AAD 2020AA search for ${{\mathit H}_{{{2}}}^{0}}$/ ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ produced by gluon fusion or ${{\mathit b}}$-associated production using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 2(a), 2(b) for limits on the product of cross section and branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$, ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.2 - 2.5$ TeV.
43  AAD 2020AI search for ${{\mathit Z}}{{\mathit H}}$ production followed by the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 36 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The search looks for collimated ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ decays and is complementary to AABOUD 2018BX. See their Fig. 10 for limits on the product of production cross section and branching ratios in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 30$ GeV.
44  AAD 2020AO search for gluon fusion production of ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ (with hadronically decaying ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$) using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Limit on the product of production cross section times branching ratios in the range $28 - 817$ fb (95$\%$ CL) is given for ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.0 - 3.0$ TeV, see their Fig. 13.
45  AAD 2020C combine searches for a scalar resonance decaying to ${{\mathit H}}{{\mathit H}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV from AABOUD 2019A, AABOUD 2019O, AABOUD 2018CQ, AABOUD 2019T, AABOUD 2018CW, and AABOUD 2018BU. See their Fig. 5(a) for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.26 - 3$ TeV.
46  AAD 2020L search for ${{\mathit b}}$-associated production of ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 27.8 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for limits on the product of cross section and branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.45 - 1.4$ TeV.
47  AAD 2020X search for vector-boson-fusion production of ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}{{\mathit H}}$ using 126 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on the product of cross section and branching ratio for the assumptions of a narrow- and broad-width resonance.
48  AAIJ 2020AL search for dimuon resonance in the mass range $0.2 - 60$ GeV in 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, in inclusive and ${{\mathit b}}$ quark associated production. Displaced decays are searched for for masses below 3 GeV. See their Figs. $7 - 9$ for cross section limits and Fig. 10 for limits for mixing angle in two Higgs doublet plus singlet model (at 90$\%$ CL).
49  SIRUNYAN 2020 search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ or ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10 for limits on the product of production cross section (normalized to the SM) and branching ratios in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $4 - 15$ GeV.
50  SIRUNYAN 2020AA search for ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ or ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}_{{{2}}}^{0}}$, ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on the product of cross section and branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.12 - 1$ TeV and ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.03 - 1$ TeV.
51  SIRUNYAN 2020AC search for gluon-fusion production of ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}{{\mathit H}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on the product of cross section and branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $220 - 400$ GeV.
52  SIRUNYAN 2020AD search for lepton-flavor violating decays ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \tau}}$ , ${{\mathit e}}{{\mathit \tau}}$ of gluon-fusion-produced ${{\mathit H}_{{{2}}}^{0}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 (9) and Table 5 (6) for limits on production cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 0.9$ TeV for the ${{\mathit \mu}}{{\mathit \tau}}$ (${{\mathit e}}{{\mathit \tau}}$) final state.
53  SIRUNYAN 2020AF search for ${{\mathit H}_{{{2}}}^{0}}$/ ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$ with one or two charged leptons in the final state using kinematic variables in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 5 and 6 for limits on top Yukawa coupling of ${{\mathit H}_{{{2}}}^{0}}$ and ${{\mathit A}^{0}}$ for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$, ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.4 - 0.75$ TeV for various width assumptions.
54  SIRUNYAN 2020AP search for the decay ${{\mathit H}}$ or ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ (for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = 300 GeV) with boosted final-state topology in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on the product of production cross section (normalized to the SM) and branching ratios in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.6 - 21$ GeV, and Figs. 8 and 9 for its interpretation in terms of models with two Higgs doublets plus a singlet.
55  SIRUNYAN 2020Y search for gluon-fusion and vector-boson-fusion production of ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ in the final states ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for limits on the product of cross section and branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 3$ TeV.
56  SIRUNYAN 2020Z search for ${{\mathit H}_{{{{1,2}}}}^{0}}$ or ${{\mathit A}^{0}}$ production in association with a ${{\mathit t}}{{\overline{\mathit t}}}$ pair, decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$, in 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 12 for limits on production cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{{1,2}}}}^{0}}}$, ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 75$ GeV and $108 - 340$ GeV.
57  AABOUD 2019A search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in $27.5 - 36.1$ fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9(a) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.26 - 3$ TeV.
58  AABOUD 2019AG search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 36.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 (a) for limits on the product of production cross section (normalized to the SM) and branching ratios in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $20 - 60$ GeV.
59  AABOUD 2019O search for a scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 12 (left) for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.5 - 3$ TeV.
60  AABOUD 2019T search for a scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 3 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 500$ GeV, assuming SM decay rates for the ${{\mathit H}}$.
61  AABOUD 2019V combine published ATLAS data to constrain two-Higgs-doublet plus singlet pseudoscalar model with ${{\mathit A}_{{{1}}}^{0}}$ decaying to invisible final states. See their Fig. 19 for excluded parameter regions.
62  AABOUD 2019Y search for a narrow scalar resonance produced by gluon fusion or ${{\mathit b}}$ associated production, decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 4 and 5(a) for cross section limits for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 1.0$ TeV.
63  AALTONEN 2019 search for ${{\mathit b}}$ associated production of a scalar particle decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 5.4 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. See their Fig. 3 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{{1,2}}}}^{0}}}$ = $100 - 300$ GeV.
64  SIRUNYAN 2019 search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9 (left) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 900$ GeV.
65  SIRUNYAN 2019AE search for a scalar resonance produced in association with a ${{\mathit b}}{{\overline{\mathit b}}}$ pair, decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $25 - 70$ GeV.
66  SIRUNYAN 2019AN search for production of ${{\mathit A}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}{{\mathit A}_{{{1}}}^{0}}$ followed by ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit A}_{{{1}}}^{0}}$ $\rightarrow$ invisible in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, in the mass range ${\mathit m}_{{{\mathit A}_{{{2}}}^{0}}}$ = $0.2 - 1.6$ TeV, ${\mathit m}_{{{\mathit A}_{{{1}}}^{0}}}$ = $0.15 - 0.5$ TeV. See their Fig. 6 for limits in terms of two-Higgs-doublet plus singlet pseudoscalar model.
67  SIRUNYAN 2019AV search for a scalar resonance produced by gluon fusion or ${{\mathit b}}$-associated production, decaying to ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$) or ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.22 - 1.0$ TeV.
68  SIRUNYAN 2019B search for gluon fusion production of narrow scalar resonance with large transverse momentum, decaying to ${{\mathit b}}{{\overline{\mathit b}}}$, in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 7 and 8 for limits on cross section times branching ratio for the resonance mass of $50 - 350$ GeV.
69  SIRUNYAN 2019BB search for the decay ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. $4 - 6$ for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}$ = $80 - 110$ GeV (some results in Fig. 5 for ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}$ = $70 - 110$ GeV).
70  SIRUNYAN 2019BD search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on the product of cross section times branching ratios in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $20 - 62.5$ GeV. See also their Figs. 6 and 7 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
71  SIRUNYAN 2019BE combine searches for ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV in various ${{\mathit H}}$ decay modes, from SIRUNYAN 2018A, SIRUNYAN 2018AF, SIRUNYAN 2018CW, SIRUNYAN 2019, and SIRUNYAN 2019H. See their Fig. 3 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.25 - 3$ TeV.
72  SIRUNYAN 2019BQ search for production of ${{\mathit H}_{{{{1,2}}}}^{0}}$ decaying to ${{\mathit A}^{0}}$ ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 2 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{{1,2}}}}^{0}}}$ = $90 - 150$ GeV, ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.25 - 3.55$ GeV.
73  SIRUNYAN 2019CR search for production of ${{\mathit H}_{{{2}}}^{0}}$ $/$ ${{\mathit A}^{0}}$ in gluon fusion and in association with a ${{\mathit b}}{{\overline{\mathit b}}}$ pair, decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for limits on cross section times branching ratio.
74  SIRUNYAN 2019H search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, where one ${{\mathit b}}{{\overline{\mathit b}}}$ pair is resolved and the other not. Limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.75 - 1.6$ TeV are obtained and combined with data from SIRUNYAN 2018AF. See their Fig. 5 (right).
75  AABOUD 2018AA search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$, with ${{\mathit Z}}$ decaying hadronically, in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8(a) for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $1.0 - 6.8$ TeV.
76  AABOUD 2018AG search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit g}}{{\mathit g}}$ in 36.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 2 and Table 6 for cross section limits in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $20 - 60$ GeV.
77  AABOUD 2018AH search for production of an ${{\mathit A}^{0}}$ in gluon-gluon fusion and in association with a ${{\mathit b}}{{\overline{\mathit b}}}$, decaying to ${{\mathit Z}}$ ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $230 - 800$ GeV and ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $130 - 700$ GeV.
78  AABOUD 2018AI search for production of an ${{\mathit A}^{0}}$ in gluon-gluon fusion and in association with a ${{\mathit b}}{{\overline{\mathit b}}}$, decaying to ${{\mathit Z}}{{\mathit H}}$ in the final states ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit b}}{{\overline{\mathit b}}}$ and ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.2 - 2$ TeV. See also AABOUD 2018CC.
79  AABOUD 2018BF search for production of a heavy ${{\mathit H}_{{{2}}}^{0}}$ state decaying to ${{\mathit Z}}{{\mathit Z}}$ in the final states ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ and ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 1.2$ TeV assuming ggF or VBF with the NWA. See their Fig. 7 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.4 - 1.0$ TeV assuming ggF, and with several assumptions on its width.
80  AABOUD 2018BU search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit W}}{{\mathit W}^{*}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 500$ GeV.
81  AABOUD 2018BX search for associated production of ${{\mathit W}}{{\mathit H}}$ or ${{\mathit Z}}{{\mathit H}}$ followed by the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 9 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $20 - 60$ GeV. See also their Fig. 10 for the dependence of the limit on ${{\mathit A}^{0}}$ lifetime.
82  AABOUD 2018CQ search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 2 (above) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 1000$ GeV.
83  AABOUD 2018F search for production of a narrow scalar resonance decaying to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ and ${{\mathit Z}}{{\mathit Z}}$, followed by hadronic decays of ${{\mathit W}}$ and ${{\mathit Z}}$, in 36.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5(c) for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $1.2 - 3.0$ TeV.
84  AAIJ 2018AM search for gluon-fusion production of ${{\mathit H}_{{{{1,2}}}}^{0}}$ decaying to ${{\mathit \mu}}{{\mathit \tau}}$ in 2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 2 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{{1,2}}}}^{0}}}$ = $45 - 195$ GeV.
85  AAIJ 2018AQ search for gluon-fusion production of a scalar particle ${{\mathit A}^{0}}$ decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 1.99 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 0.98 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. See their Fig. 4 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit A}^{0}}}$ = $5.5 - 15$ GeV (using the $\mathit E_{{\mathrm {cm}}}$ = 8 TeV data set).
86  AAIJ 2018AQ search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$, with one of the ${{\mathit A}^{0}}$ decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$, in 1.99 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 0.98 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. See their Fig. 5 (right) for limits on the product of branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $5.5 - 15$ GeV (using the $\mathit E_{{\mathrm {cm}}}$ = 8 TeV data set).
87  SIRUNYAN 2018AF search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, where both ${{\mathit b}}{{\overline{\mathit b}}}$ pairs are not resolved. See their Fig. 9 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.75 - 3$ TeV.
88  SIRUNYAN 2018BA search for production of a heavy ${{\mathit H}_{{{2}}}^{0}}$ state decaying to ${{\mathit Z}}{{\mathit Z}}$ in the final states ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit q}}{{\overline{\mathit q}}}$, and ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 10 and 11 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.13 - 3$ TeV with several assumptions on its width and on the fraction of Vector-Boson-Fusion of the total production cross section.
89  SIRUNYAN 2018CW search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, where both ${{\mathit b}}{{\overline{\mathit b}}}$ pairs are resolved. See their Fig. 9 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 1200$ GeV.
90  SIRUNYAN 2018DK search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$, with ${{\mathit Z}}$ decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ or hadronically, in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.35 - 4$ TeV for different assumptions on the width of the resonance.
91  SIRUNYAN 2018DT search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on the product of branching ratios in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 60$ GeV. See also their Fig. 8 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
92  SIRUNYAN 2018DU search for production of a narrow scalar resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 35.9 fb${}^{-1}$ (taken in 2016) of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 3 (right) for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.5 - 5$ TeV for several values of its width-to-mass ratio.
93  SIRUNYAN 2018ED search for production of an ${{\mathit A}^{0}}$ in gluon-gluon fusion and in association with a ${{\mathit b}}{{\overline{\mathit b}}}$, decaying to ${{\mathit Z}}{{\mathit H}}$ in the final states ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit b}}{{\overline{\mathit b}}}$ or ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.8 - 2$ TeV.
94  SIRUNYAN 2018EE search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for limits on the product of branching ratios in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 62.5$ GeV, normalized to the SM production cross section. See also their Fig. 5 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
95  SIRUNYAN 2018F search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ ${{\mathit b}}{{\overline{\mathit b}}}$ or ${{\mathit Z}}{{\mathit Z}}{{\mathit b}}{{\overline{\mathit b}}}$ in the final state ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \nu}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $250 - 900$ GeV.
96  AABOUD 2017 search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for the limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.25 - 3.0$ TeV.
97  AABOUD 2017AP search for production of a scalar resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 36.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4(a) for limits on fiducial cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 2.7$ TeV with narrow width approximation.
98  AABOUD 2017AW search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.25 - 2.4$ TeV.
99  KHACHATRYAN 2017AZ search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$, and ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Figs. 4, 5, and 6 for cross section limits in the range ${\mathit m}_{{{\mathit A}^{0}}}$ = $5 - 62.5$ GeV. See also their Figs. 7, 8, and 9 for interpretation of the data in terms of models with two Higgs doublets and a singlet.
100  KHACHATRYAN 2017D search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 2.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 3 and 4 for the limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 2.0$ TeV.
101  KHACHATRYAN 2017R search for production of a narrow scalar resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 12.9 fb${}^{-1}$ (taken in 2016) of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 2 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.5 - 4.5$ TeV for several values of its width-to-mass ratio. Limits from combination with KHACHATRYAN 2016M are shown in their Figs. 4 and 6.
102  SIRUNYAN 2017CN search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 18.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 5 (above) and Table II for limits on the cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.3 - 1$ TeV, and Fig. 6 (above) and Table III for the corresponding limits by combining with data from KHACHATRYAN 2016BQ and KHACHATRYAN 2015R.
103  SIRUNYAN 2017Y search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 2.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 3, 4 and Table 3 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.7 - 3.0$ TeV, and Fig. 5 for the corresponding limits for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 3.0$ TeV from combination with KHACHATRYAN 2017D data.
104  AABOUD 2016AB search for associated production of ${{\mathit W}}{{\mathit H}}$ with the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $20 - 60$ GeV.
105  AABOUD 2016AE search for production of a narrow scalar resonance decaying to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ and ${{\mathit Z}}{{\mathit Z}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.5 - 3$ TeV.
106  AABOUD 2016H search for production of a scalar resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 12 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.2 - 2$ TeV with different assumptions on the width.
107  AABOUD 2016I search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10(c) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.5 - 3$ TeV.
108  AAD 2016AX search for production of a heavy ${{\mathit H}}$ state decaying to ${{\mathit Z}}{{\mathit Z}}$ in the final states ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$, ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit q}}{{\overline{\mathit q}}}$, and${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit q}}{{\overline{\mathit q}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig.12 for upper limits on ${\mathit \sigma (}{{\mathit H}}{)}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$) for ${\mathit m}_{{{\mathit H}}}$ ranging from 140 GeV to 1000 GeV.
109  AAD 2016C search for production of a heavy ${{\mathit H}}$ state decaying to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ in the final states ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Figs. 12, 13, and 16 for upper limits on ${\mathit \sigma (}{{\mathit H}}{)}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$) for ${\mathit m}_{{{\mathit H}}}$ ranging from 300 GeV to 1000 or 1500 GeV with various assumptions on the total width of ${{\mathit H}}$.
110  AAD 2016L search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 4 (upper right) for limits on cross section times branching ratios (normalized to the SM ${{\mathit H}}$ cross section) for ${\mathit m}_{{{\mathit A}^{0}}}$ = $10 - 60$ GeV.
111  AAD 2016L search for the decay ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 4 (lower right) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = 600 GeV and ${\mathit m}_{{{\mathit A}^{0}}}$ = $10 - 245$ GeV, and Table 5 for limits for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$= 300 and 900 GeV.
112  AALTONEN 2016C search for electroweak associated production of ${{\mathit H}_{{{1}}}^{0}}{{\mathit H}^{\pm}}$ followed by the decays ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit W}^{*}}$, ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ for ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}$ = $10 - 105$ GeV and ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $30 - 300$ GeV. See their Fig. 3 for excluded parameter region in a two-doublet model in which ${{\mathit H}_{{{1}}}^{0}}$ has no direct decay to fermions.
113  KHACHATRYAN 2016BG search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for limits on the cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $1.15 - 3$ TeV.
114  KHACHATRYAN 2016BQ search for a resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 9 for limits on the cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.26 - 1.1$ TeV.
115  KHACHATRYAN 2016F search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}$ ${{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 8 for cross section limits for ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}$ = $4 - 8$ GeV.
116  KHACHATRYAN 2016M search for production of a narrow resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 3.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 3 (top) for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.5 - 4$ TeV.
117  KHACHATRYAN 2016P search for gluon fusion production of an ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 8 (lower right) for cross section limits for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 350$ GeV.
118  KHACHATRYAN 2016P search for gluon fusion production of an ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 10 for cross section limits for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $220 - 350$ GeV.
119  AAD 2015BK search for production of a heavy ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}{{\mathit H}}$ in the final state ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 14(c) for ${\mathit \sigma (}{{\mathit H}_{{{2}}}^{0}}{)}$ B( ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$) for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $500 - 1500$ GeV with ${\Gamma}_{{\mathit H}_{{{2}}}^{0}}$ = 1 GeV.
120  AAD 2015BZ search for the decay ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ (${\mathit m}_{{{\mathit H}}}$ = 125 GeV) in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.7 - 50$ GeV.
121  AAD 2015BZ search for a state ${{\mathit H}_{{{2}}}^{0}}$ via the decay ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $100 - 500$ GeV and ${\mathit m}_{{{\mathit A}^{0}}}$ = 5 GeV.
122  AAD 2015CE search for production of a heavy ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}{{\mathit H}}$ in the final states ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ and ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit W}}{{\mathit W}^{*}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and combine with data from AAD 2015H and AAD 2015BK. A limit ${\mathit \sigma (}{{\mathit H}_{{{2}}}^{0}}{)}$ B( ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$) $<$ $2.1 - 0.011$ pb (95$\%$ CL) is given for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 1000$ GeV. See their Fig. 6.
123  AAD 2015H search for production of a heavy ${{\mathit H}_{{{2}}}^{0}}$ decaying to ${{\mathit H}}{{\mathit H}}$ in the finalstate ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV.A limit of ${\mathit \sigma (}{{\mathit H}_{{{2}}}^{0}}{)}$ B( ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$) $<$ $3.5 - 0.7$ pb is given for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $260 - 500$ GeV at 95$\%$ CL. See their Fig. 3.
124  AAD 2015S search for production of ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit b}}{{\overline{\mathit b}}}$ and ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 3 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $200 - 1000$ GeV.
125  KHACHATRYAN 2015AW search for production of a heavy state ${{\mathit H}_{{{2}}}^{0}}$ of an electroweak singlet extension of the Standard Model via the decays of ${{\mathit H}_{{{2}}}^{0}}$ to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ and ${{\mathit Z}}{{\mathit Z}}$ in up to 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV in the range ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $145 - 1000$ GeV. See their Figs. 8 and 9 for limits in the parameter space of the model.
126  KHACHATRYAN 2015BB search for production of a resonance ${{\mathit H}}$ decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}}}$ = $150 - 850$ GeV.
127  KHACHATRYAN 2015N search for production of ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 3 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $225 - 600$ GeV.
128  KHACHATRYAN 2015O search for production of a high-mass narrow resonance ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $800 - 2500$ GeV.
129  KHACHATRYAN 2015R search for a narrow scalar resonance decaying to ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 17.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 5 (top) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$ = $0.27 - 1.1$ TeV.
130  AAD 2014AP search for a second ${{\mathit H}}$ state decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in addition to the state at about 125 GeV in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 4 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}}}$ = $65 - 600$ GeV.
131  AAD 2014M search for the decay cascade ${{\mathit H}_{{{2}}}^{0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}^{\pm}}{{\mathit W}^{\mp}}$, ${{\mathit H}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Table III for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{{2}}}^{0}}}$= $325 - 1025$ GeV and ${\mathit m}_{{{\mathit H}^{+}}}$= $225 - 925$ GeV.
132  CHATRCHYAN 2014G search for a second ${{\mathit H}}$ state decaying to ${{\mathit W}}{{\mathit W}^{(*)}}$ in addition to the observed signal at about 125 GeV using 4.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.4 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 21 (right) for cross section limits in the mass range $110 - 600$ GeV.
133  KHACHATRYAN 2014P search for a second ${{\mathit H}}$ state decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in addition to the observed signal at about 125 GeV using 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Figs. 27 and 28 for cross section limits in the mass range $110 - 150$ GeV.
134  AALTONEN 2013P search for production of a heavy Higgs boson ${{\mathit H}^{'0}}$ that decays into a charged Higgs boson ${{\mathit H}^{\pm}}$ and a lighter Higgs boson ${{\mathit H}}$ via the decay chain ${{\mathit H}^{'0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$, ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit H}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ in the final state ${{\mathit \ell}}{{\mathit \nu}}$ plus 4 jets in 8.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. See their Fig. 4 for limits on cross section times branching ratio in the ${\mathit m}_{{{\mathit H}^{\pm}}}−{\mathit m}_{{{\mathit H}^{'0}}}$ plane for ${\mathit m}_{{{\mathit H}}}$ = 126 GeV.
135  CHATRCHYAN 2013BJ search for ${{\mathit H}}$ production in the decay chain ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 5.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. See their Fig. 2 for limits on cross section times branching ratio.
136  AALTONEN 2011P search in 2.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV for the decay chain ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ with ${\mathit m}_{{{\mathit A}^{0}}}$ between 4 and 9 GeV. See their Fig.$~$4 for limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$) for 90 $<$ ${\mathit m}_{{{\mathit H}^{+}}}<$ 160 GeV.
137  ABBIENDI 2010 search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$ with the decay chain ${{\mathit H}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$, ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ + (${{\mathit \gamma}}$ or ${{\mathit Z}^{*}}$), when ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}$ and ${{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$ are nearly degenerate. For a mass difference of 2 (4) GeV, a lower limit on ${\mathit m}_{{{\mathit H}}}$ of 108.4 (107.0) GeV (95$\%$ CL) is obtained for SM ${{\mathit Z}}{{\mathit H}}$ cross section and B( ${{\mathit H}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{{1}}}^{0}}{{\widetilde{\mathit \chi}}_{{{2}}}^{0}}$) = 1.
138  SCHAEL 2010 search for the process ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$ followed by the decay chain ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ with ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ at $\mathit E_{{\mathrm {cm}}}$ = $183 - 209$ GeV. For a ${{\mathit H}}{{\mathit Z}}{{\mathit Z}}$ coupling equal to the SM value, B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$) = B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$) = 1, and ${\mathit m}_{{{\mathit A}^{0}}}$ = $4 - 10$ GeV, ${\mathit m}_{{{\mathit H}}}$ up to 107 GeV is excluded at 95$\%$ CL.
139  ABAZOV 2009V search for ${{\mathit H}}$ production followed by the decay chain ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 4.2 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. See their Fig. 3 for limits on $\sigma ({{\mathit H}})\cdot{}$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$) for ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.6 - 19$ GeV.
140  ABBIENDI 2005A search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit A}^{0}}$ in general Type-II two-doublet models, with decays ${{\mathit H}_{{{1}}}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit g}}{{\mathit g}}$, ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$, and ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$.
141  ABBIENDI 2004K search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$ with ${{\mathit H}}$ decaying to two jets of any flavor including ${{\mathit g}}{{\mathit g}}$. The limit is for SM production cross section with B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}$) = 1.
142  ABDALLAH 2004 consider the full combined LEP and LEP2 datasets to set limits on the Higgs coupling to ${{\mathit W}}$ or ${{\mathit Z}}$ bosons, assuming SM decays of the Higgs. Results in Fig. 26.
143  ACHARD 2004B search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$ with ${{\mathit H}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit c}}{{\overline{\mathit c}}}$, or ${{\mathit g}}{{\mathit g}}$. The limit is for SM production cross section with B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}$) = 1.
144  ACHARD 2004F search for ${{\mathit H}}$ with anomalous coupling to gauge boson pairs in the processes ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$, ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit H}}$, ${{\mathit H}}{{\mathit Z}}$ with decays ${{\mathit H}}$ $\rightarrow$ ${{\mathit f}}{{\overline{\mathit f}}}$, ${{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit Z}}{{\mathit \gamma}}$, and ${{\mathit W}^{*}}{{\mathit W}}$ at $\mathit E_{{\mathrm {cm}}}$ = $189 - 209$ GeV. See paper for limits.
145  ABBIENDI 2003F search for ${{\mathit H}}$ $\rightarrow$ anything in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$, using the recoil mass spectrum of ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$. In addition, it searched for ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ and ${{\mathit H}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or photons. Scenarios with large width or continuum ${{\mathit H}}$ mass distribution are considered. See their Figs. 11--14 for the results.
146  ABBIENDI 2003G search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}_{{{1}}}^{0}}{{\mathit Z}}$ followed by ${{\mathit H}_{{{1}}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$, ${{\mathit g}}{{\mathit g}}$, or ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in the region ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}$ = 45-86 GeV and ${\mathit m}_{{{\mathit A}^{0}}}$ = 2-11 GeV. See their Fig. 7 for the limits.
147  Search for associated production of a ${{\mathit \gamma}}{{\mathit \gamma}}$ resonance with a ${{\mathit Z}}~$boson, followed by ${{\mathit Z}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, or ${{\mathit \nu}}{{\overline{\mathit \nu}}}$, at $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV. The limit is for a ${{\mathit H}}$ with SM production cross section and B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit f}}{{\overline{\mathit f}}}$)=0 for all fermions ${{\mathit f}}$.
148  For B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$)=1, ${\mathit m}_{{{\mathit H}}}>113.1$ GeV is obtained.
149  HEISTER 2002M search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$, assuming that ${{\mathit H}}$ decays to ${{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit g}}{{\mathit g}}$, or ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ only. The limit assumes SM production cross section.
150  ABBIENDI 2001E search for neutral Higgs bosons in general Type-II two-doublet models, at $\mathit E_{{\mathrm {cm}}}{}\leq{}$189 GeV. In addition to usual final states, the decays ${{\mathit H}_{{{1}}}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit g}}{{\mathit g}}$ are searched for. See their Figs.$~$15,16 for excluded regions.
151  ACCIARRI 2000R search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$ with ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit Z}}{{\mathit \gamma}}$, or ${{\mathit \gamma}}{{\mathit \gamma}}$. See their Fig.$~$3 for limits on $\sigma \cdot{}$B. Explicit limits within an effective interaction framework are also given, for which the Standard Model Higgs search results are used in addition.
152  ACCIARRI 2000R search for the two-photon type processes ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit H}}$ with ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ or ${{\mathit \gamma}}{{\mathit \gamma}}$. See their Fig.$~$4 for limits on $\Gamma\mathrm {( {{\mathit H}} \rightarrow {{\mathit \gamma}} {{\mathit \gamma}})}\cdot{}$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ or ${{\mathit b}}{{\overline{\mathit b}}}$) for ${\mathit m}_{{{\mathit H}}}=70 - 170$ GeV.
153  GONZALEZ-GARCIA 1998B use ${D0}$ limit for ${{\mathit \gamma}}{{\mathit \gamma}}$ events with missing $\mathit E_{\mathit T}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions (ABBOTT 1998) to constrain possible ${{\mathit Z}}{{\mathit H}}$ or ${{\mathit W}}{{\mathit H}}$ production followed by unconventional ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ decay which is induced by higher-dimensional operators. See their Figs.$~$1 and$~$2 for limits on the anomalous couplings.
154  KRAWCZYK 1997 analyse the muon anomalous magnetic moment in a two-doublet Higgs model (with type$~$II Yukawa couplings) assuming no ${{\mathit H}_{{{1}}}^{0}}{{\mathit Z}}{{\mathit Z}}$ coupling and obtain ${\mathit m}_{{{\mathit H}_{{{1}}}^{0}}}{ {}\gtrsim{} }5$ GeV or ${\mathit m}_{{{\mathit A}^{0}}}{ {}\gtrsim{} }5$ GeV for tan $\beta >50$. Other Higgs bosons are assumed to be much heavier.
155  ALEXANDER 1996H give B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}){\times }$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$) $<1 - 4 \times 10^{-5}$ (95$\%$CL) and B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}){\times }$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$) $<0.7 - 2 \times 10^{-5}$ (95$\%$CL) in the range 20 $<{\mathit m}_{{{\mathit H}}}$ $<$80 GeV.
References