MASS LIMITS for ${{\mathit g}_{{{A}}}}$ (axigluon) and Other Color-Octet Gauge Bosons

INSPIRE   PDGID:
S056AXG
Axigluons are massive color-octet gauge bosons in chiral color models and have axial-vector coupling to quarks with the same coupling strength as gluons.
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{ > 6600}$ OUR LIMIT
$\bf{\text{none 1800 - 6600}}$ 95 1
SIRUNYAN
2020AI
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 600 - 6100}$ 95 2
SIRUNYAN
2018BO
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 600 - 5500}$ 95 3
KHACHATRYAN
2017W
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 1500 - 5100}$ 95 4
KHACHATRYAN
2016K
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 500 - 1600}$ 95 5
KHACHATRYAN
2016L
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 1300 - 3600}$ 95 6
KHACHATRYAN
2015V
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
• • We do not use the following data for averages, fits, limits, etc. • •
7
KHACHATRYAN
2017Y
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit g}_{{{A}}}}$ $\rightarrow$ 8 ${{\mathit j}}$
8
AAD
2016W
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$ , ${{\mathit g}_{{{A}}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$> 2800$ 95 9
KHACHATRYAN
2016E
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{KK}}}}{{\mathit X}}$, ${{\mathit g}_{{{KK}}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
10
KHACHATRYAN
2015AV
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \Theta}^{0}}{{\mathit \Theta}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit g}}$
11
AALTONEN
2013R
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ ${{\mathit \sigma}}{{\mathit \sigma}}$, ${{\mathit \sigma}}$ ${{\mathit j}}$
$> 3360$ 95 12
CHATRCHYAN
2013A
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}$ X, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 1000 - 3270}$ 95 13
CHATRCHYAN
2013AS
CMS Superseded by KHACHATRYAN 2015V
$\text{none 250 - 740}$ 95 14
CHATRCHYAN
2013AU
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ 2 ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$> 775$ 95 15
ABAZOV
2012R
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 2470$ 95 16
CHATRCHYAN
2011Y
CMS Superseded by CHATRCHYAN 2013A
17
AALTONEN
2010L
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}{{\mathit X}}$, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$\text{none 1470 - 1520}$ 95 18
KHACHATRYAN
2010
CMS Superseded by CHATRCHYAN 2013A
$\text{none 260 - 1250}$ 95 19
AALTONEN
2009AC
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}$ X, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$> 910$ 95 20
CHOUDHURY
2007
RVUE ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit X}}$
$>365$ 95 21
DONCHESKI
1998
RVUE $\Gamma\mathrm {( {{\mathit Z}} \rightarrow hadron)}$
$\text{none 200 - 980}$ 95 22
ABE
1997G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}$ X, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 200 - 870}$ 95 23
ABE
1995N
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}$ X, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 240 - 640}$ 95 24
ABE
1993G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}$ X, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$>50$ 95 25
CUYPERS
1991
RVUE ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons${)}$
$\text{none 120-210}$ 95 26
ABE
1990H
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}$ X, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$>29$ 27
ROBINETT
1989
THEO Partial-wave unitarity
$\text{none 150-310}$ 95 28
ALBAJAR
1988B
UA1 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{{A}}}}$ X, ${{\mathit g}_{{{A}}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$>20$
BERGSTROM
1988
RVUE ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit \Upsilon}}$ X via ${{\mathit g}_{{{A}}}}{{\mathit g}}$
$>9$ 29
CUYPERS
1988
RVUE ${{\mathit \Upsilon}}$ decay
$>25$ 30
DONCHESKI
1988B
RVUE ${{\mathit \Upsilon}}$ decay
1  SIRUNYAN 2020AI search for resonances decaying into dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
2  SIRUNYAN 2018BO search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
3  KHACHATRYAN 2017W search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
4  KHACHATRYAN 2016K search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
5  KHACHATRYAN 2016L search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.
6  KHACHATRYAN 2015V search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
7  KHACHATRYAN 2017Y search for pair production of color-octet gauge boson ${{\mathit g}_{{{A}}}}$ each decaying to 4${{\mathit j}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
8  AAD 2016W search for a new resonance decaying to a pair of ${{\mathit b}}$ and ${{\mathit B}_{{{H}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The vector-like quark ${{\mathit B}_{{{H}}}}$ is assumed to decay to . See their Fig. 3 and Fig. 4 for limits on $\sigma \cdot{}\mathit B$.
9  KHACHATRYAN 2016E search for KK gluon decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
10  KHACHATRYAN 2015AV search for pair productions of neutral color-octet weak-triplet scalar particles (${{\mathit \Theta}^{0}}$), decaying to ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit Z}}{{\mathit g}}$ or ${{\mathit \gamma}}{{\mathit g}}$, in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The ${{\mathit \Theta}^{0}}$ particle is often predicted in coloron (${{\mathit G}^{\,'}}$, color-octet gauge boson) models and appear in the ${{\mathit p}}{{\mathit p}}$ collisions through ${{\mathit G}^{\,'}}$ $\rightarrow$ ${{\mathit \Theta}^{0}}{{\mathit \Theta}^{0}}$ decays. Assuming B( ${{\mathit \Theta}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$) = 0.5, they give limits ${\mathit m}_{{{\mathit \Theta}^{0}}}$ $>$ 623 GeV (426 GeV) for ${\mathit m}_{{{\mathit G}^{\,'}}}$ = 2.3 ${\mathit m}_{{{\mathit \Theta}^{0}}}$ (${\mathit m}_{{{\mathit G}^{\,'}}}$ = 5 ${\mathit m}_{{{\mathit \Theta}^{0}}}$).
11  AALTONEN 2013R search for new resonance decaying to ${{\mathit \sigma}}{{\mathit \sigma}}$, with hypothetical strongly interacting ${{\mathit \sigma}}$ particle subsequently decaying to 2 jets, in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV, using data corresponding to an integrated luminosity of 6.6 fb${}^{-1}$. For 50 GeV $<$ ${\mathit m}_{{{\mathit \sigma}}}$ $<$ ${\mathit m}_{{{\mathit g}_{{{A}}}}}$/2, axigluons in mass range $150 - 400$ GeV are excluded.
12  CHATRCHYAN 2013A search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
13  CHATRCHYAN 2013AS search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
14  CHATRCHYAN 2013AU search for the pair produced color-octet vector bosons decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ pairs in ${{\mathit p}}{{\mathit p}}$ collisions. The quoted limit is for B( ${{\mathit g}_{{{A}}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$) = 1.
15  ABAZOV 2012R search for massive color octet vector particle decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. The quoted limit assumes ${{\mathit g}_{{{A}}}}$ couplings with light quarks are suppressed by 0.2.
16  CHATRCHYAN 2011Y search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }~=~7~$TeV.
17  AALTONEN 2010L search for massive color octet non-chiral vector particle decaying into ${{\mathit t}}{{\overline{\mathit t}}}$ pair with mass in the range 400 GeV $<$ M $<$ 800 GeV. See their Fig.$~$6 for limit in the mass-coupling plane.
18  KHACHATRYAN 2010 search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }~=~7~$TeV.
19  AALTONEN 2009AC search for new narrow resonance decaying to dijets.
20  CHOUDHURY 2007 limit is from the ${{\mathit t}}{{\overline{\mathit t}}}$ production cross section measured at CDF.
21  DONCHESKI 1998 compare $\alpha _{\mathit s}$ derived from low-energy data and that from $\Gamma\mathrm {( {{\mathit Z}} \rightarrow hadrons)}/\Gamma\mathrm {( {{\mathit Z}} \rightarrow leptons)}$.
22  ABE 1997G search for new particle decaying to dijets.
23  ABE 1995N assume axigluons decaying to quarks in the Standard Model only.
24  ABE 1993G assume $\Gamma\mathrm {({{\mathit g}_{{{A}}}})}$ = $\mathit N{{\mathit \alpha}_{{{s}}}}{\mathit m}_{{{\mathit g}_{{{A}}}}}$/6 with $\mathit N$ = 10.
25  CUYPERS 1991 compare $\alpha _{\mathit s}$ measured in ${{\mathit \Upsilon}}$ decay and that from $\mathit R$ at PEP/PETRA energies.
26  ABE 1990H assumes $\Gamma\mathrm {({{\mathit g}_{{{A}}}})}$ = $\mathit N{{\mathit \alpha}_{{{s}}}}{\mathit m}_{{{\mathit g}_{{{A}}}}}$/6 with $\mathit N$ = 5$~(\Gamma\mathrm {({{\mathit g}_{{{A}}}})}$ = 0.09${\mathit m}_{{{\mathit g}_{{{A}}}}}$). For $\mathit N$ = 10, the excluded region is reduced to 120$-$150 GeV.
27  ROBINETT 1989 result demands partial-wave unitarity of $\mathit J = 0$ ${\mathit {\mathit t}}$ ${\mathit {\overline{\mathit t}}}$ $\rightarrow$ ${\mathit {\mathit t}}$ ${\mathit {\overline{\mathit t}}}$ scattering amplitude and derives a limit ${\mathit m}_{{{\mathit g}_{{{A}}}}}$ $>$ $0.5$ ${\mathit m}_{{{\mathit t}}}$. Assumes ${\mathit m}_{{{\mathit t}}}$ $>$ 56 GeV.
28  ALBAJAR 1988B result is from the nonobservation of a peak in two-jet invariant mass distribution. $\Gamma\mathrm {({{\mathit g}_{{{A}}}})}$ $<$ $0.4$ ${\mathit m}_{{{\mathit g}_{{{A}}}}}$ assumed. See also BAGGER 1988.
29  CUYPERS 1988 requires $\Gamma\mathrm {( {{\mathit \Upsilon}} \rightarrow {{\mathit g}} {{\mathit g}_{{{A}}}})}<\Gamma\mathrm {( {{\mathit \Upsilon}} \rightarrow {{\mathit g}} {{\mathit g}} {{\mathit g}})}$. A similar result is obtained by DONCHESKI 1988.
30  DONCHESKI 1988B requires $\Gamma\mathrm {( {{\mathit \Upsilon}} \rightarrow {{\mathit g}} {{\mathit q}} {{\overline{\mathit q}}})}/\Gamma\mathrm {( {{\mathit \Upsilon}} \rightarrow {{\mathit g}} {{\mathit g}} {{\mathit g}})}$ $<$ $0.25$, where the former decay proceeds via axigluon exchange. A more conservative estimate of $<$ $0.5$ leads to ${\mathit m}_{{{\mathit g}_{{{A}}}}}$ $>$ 21 GeV.
References