MASS LIMITS for Leptoquarks from Pair Production

INSPIRE   JSON  (beta) PDGID:
S056EGT
These limits rely only on the color or electroweak charge of the leptoquark.

VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$>1580$ 95 1
AAD
2024AV
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit e}}$) = 1
$>1590$ 95 2
AAD
2024AV
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \mu}}$) = 1
$>1950$ 95 3
AAD
2024AV
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit t}}{{\mathit e}}$) = 1
$>1950$ 95 4
AAD
2024AV
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit t}}{{\mathit \mu}}$) = 1
$>1230$ 95 5
AAD
2024O
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \nu}}$) = 1
$>1230$ 95 6
AAD
2024O
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}}$) = 1
$>1480$ 95 7
AAD
2024O
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>1520$ 95 8
AAD
2024O
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$>1710$ 95 9
AAD
2024O
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \mu}}$) = 1
$>1600$ 95 10
AAD
2024O
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \mu}}$) = 1
$>1730$ 95 11
AAD
2024O
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit e}}$) = 1
$>1650$ 95 12
AAD
2024O
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit e}}$) = 1
$>1840$ 95 13
AAD
2024O
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1. ${\mathit LQ}$ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \tau}}$
$>1980$ 95 14
AAD
2024O
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1. ${\mathit LQ}$ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \mu}}$
$>1900$ 95 15
AAD
2024O
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1. ${\mathit LQ}$ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit e}}$
$>1810$ 95 16
HAYRAPETYAN
2024O
CMS Scalar LQ. B(${{\mathit b}}{{\mathit \mu}}$) = 1
$>2460$ 95 17
HAYRAPETYAN
2024O
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit b}}{{\mathit \mu}}$) = 1
$>1216$ 95 18
HAYRAPETYAN
2024Z
CMS Scalar LQ. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>1820$ 95 19
HAYRAPETYAN
2024Z
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>1300$ 95 20
AAD
2023BJ
ATLS Scalar LQ. B(${{\mathit c}}{{\mathit \tau}}$) = 1
$\bf{> 1460}$ 95 21
AAD
2023CF
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>1910$ 95 22
AAD
2023CF
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1, B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>1460$ 95 23
AAD
2023F
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}})=B({{\mathit b}}{{\mathit \mu}}$)=0.5
$>1440$ 95 24
AAD
2023F
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}})=B({{\mathit b}}{{\mathit e}}$)=0.5
$>1370$ 95 25
AAD
2023F
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \mu}})=B({{\mathit b}}{{\mathit \nu}}$)=0.5
$>1390$ 95 26
AAD
2023F
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit e}})=B({{\mathit b}}{{\mathit \nu}}$)=0.5
$>1980$ 95 27
AAD
2023F
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1, B(${{\mathit t}}{{\mathit \nu}}$) = B(${{\mathit b}}{{\mathit \mu}}$) = 0.5
$>1900$ 95 28
AAD
2023F
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1, B(${{\mathit t}}{{\mathit \nu}}$) = B(${{\mathit b}}{{\mathit e}}$) = 0.5
$> 1340$ 95 29
TUMASYAN
2022H
CMS Scalar LQ. B(${{\mathit t}}{{\mathit e}}$) = 1
$> 1420$ 95 30
TUMASYAN
2022H
CMS Scalar LQ. B(${{\mathit t}}{{\mathit \mu}}$) = 1
$> 1120$ 95 31
TUMASYAN
2022H
CMS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$> 1480$ 95 32
AAD
2021AG
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit e}}$) = 1
$> 1470$ 95 33
AAD
2021AG
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \mu}}$) = 1
$> 1190$ 95 34
AAD
2021AW
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$> 1030$ 95 35
AAD
2021AW
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$> 1760$ 95 36
AAD
2021AW
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$> 1260$ 95 37
AAD
2021S
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \nu}}$) = 1
$> 1430$ 95 38
AAD
2021T
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$> 950$ 95 39
SIRUNYAN
2021J
CMS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}})=B({{\mathit b}}{{\mathit \nu}}$)=0.5
$> 1650$ 95 40
SIRUNYAN
2021J
CMS Vector LQ. ${{\mathit \kappa}}$=1, B(${{\mathit t}}{{\mathit \nu}}$) = B(${{\mathit b}}{{\mathit \tau}}$) = 0.5
$\bf{> 1800}$ 95 41
AAD
2020AK
ATLS Scalar LQ. B(${{\mathit e}}{{\mathit q}}$) = 1
$\bf{> 1700}$ 95 42
AAD
2020AK
ATLS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}}$) = 1
$> 1240$ 95 43
AAD
2020S
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}}$) = 1
$> 1185$ 95 44
SIRUNYAN
2020A
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit b}}$) = 1
$> 1140$ 95 45
SIRUNYAN
2020A
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit t}}$) = 1
$> 1140$ 95 46
SIRUNYAN
2020A
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit q}}$) = 1 with ${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$
$> 1925$ 95 47
SIRUNYAN
2020A
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit \nu}}{{\mathit b}}$) = 1
$> 1825$ 95 48
SIRUNYAN
2020A
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit \nu}}{{\mathit t}}$) = 1
$> 1980$ 95 49
SIRUNYAN
2020A
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit \nu}}{{\mathit q}}$) = 1 with ${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$
$> 1400$ 95 50
AABOUD
2019AX
ATLS Scalar LQ. B(${{\mathit e}}{{\mathit q}}$) = 1
$> 1560$ 95 51
AABOUD
2019AX
ATLS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}}$) = 1
$>1000$ 95 52
AABOUD
2019X
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}}$) = 1
$>1030$ 95 53
AABOUD
2019X
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>970$ 95 54
AABOUD
2019X
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \nu}}$) = 1
$>920$ 95 55
AABOUD
2019X
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$> 1530$ 95 56
SIRUNYAN
2019BI
CMS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}})+B({{\mathit \nu}}{{\mathit q}}$) = 1
$> 1435$ 95 57
SIRUNYAN
2019BJ
CMS Scalar LQ. B(${{\mathit e}}{{\mathit q}})+B({{\mathit \nu}}{{\mathit q}}$) = 1
$> 1020$ 95 58
SIRUNYAN
2019Y
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit b}}$) = 1
$\text{none 300 - 900}$ 95 59
SIRUNYAN
2018CZ
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit t}}$) = 1
$> 1420$ 95 60
SIRUNYAN
2018EC
CMS Scalar LQ. B(${{\mathit \mu}}{{\mathit t}}$) = 1
$> 1190$ 95 61
SIRUNYAN
2018EC
CMS Vector LQ. ${{\mathit \mu}}{{\mathit t}}$, ${{\mathit \tau}}{{\mathit t}}$, ${{\mathit \nu}}{{\mathit b}}$
$> 1100$ 95 62
SIRUNYAN
2018U
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit b}}$) = 1
$> 980$ 95 63
SIRUNYAN
2018U
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit q}}$) = 1 with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$
$> 1020$ 95 64
SIRUNYAN
2018U
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit t}}$) = 1
$>1810$ 95 65
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit b}}{{\mathit \nu}}$
$>1790$ 95 66
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit q}}{{\mathit \nu}}$ with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$
$>1780$ 95 67
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$
$>740$ 95 68
KHACHATRYAN
2017J
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit b}}$) = 1
$> 850$ 95 69
SIRUNYAN
2017H
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit b}}$) = 1
$> 1050$ 95 70
AAD
2016G
ATLS Scalar LQ. B(${{\mathit e}}{{\mathit q}}$) = 1
$> 1000$ 95 71
AAD
2016G
ATLS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}}$) = 1
$> 625$ 95 72
AAD
2016G
ATLS Scalar LQ. B(${{\mathit \nu}}{{\mathit b}}$) = 1
$\text{none 200 - 640}$ 95 73
AAD
2016G
ATLS Scalar LQ. B(${{\mathit \nu}}{{\mathit t}}$) = 1
$> 1010$ 95 74
KHACHATRYAN
2016AF
CMS Scalar LQ. B(${{\mathit e}}{{\mathit q}}$) = 1
$> 1080$ 95 75
KHACHATRYAN
2016AF
CMS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}}$) = 1
$> 685$ 95 76
KHACHATRYAN
2015AJ
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit t}}$) = 1
$> 740$ 95 77
KHACHATRYAN
2014T
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit b}}$) = 1
• • We do not use the following data for averages, fits, limits, etc. • •
78
SIRUNYAN
2019BC
CMS Scalar LQ ($\rightarrow$ ${{\mathit \mu}}{{\mathit q}}$) LQ ($\rightarrow$ ${{\mathit X}}$ + DM)
$> 534$ 95 79
AAD
2013AE
ATLS Third generation
$> 525$ 95 80
CHATRCHYAN
2013M
CMS Third generation
$> 660$ 95 81
AAD
2012H
ATLS First generation
$> 685$ 95 82
AAD
2012O
ATLS Second generation
$> 830$ 95 83
CHATRCHYAN
2012AG
CMS First generation
$> 840$ 95 84
CHATRCHYAN
2012AG
CMS Second generation
$> 450$ 95 85
CHATRCHYAN
2012BO
CMS Third generation
$> 376$ 95 86
AAD
2011D
ATLS Superseded by AAD 2012H
$> 422$ 95 87
AAD
2011D
ATLS Superseded by AAD 2012O
$> 326$ 95 88
ABAZOV
2011V
D0 First generation
$> 339$ 95 89
CHATRCHYAN
2011N
CMS Superseded by CHATRCHYAN 2012AG
$> 384$ 95 90
KHACHATRYAN
2011D
CMS Superseded by CHATRCHYAN 2012AG
$> 394$ 95 91
KHACHATRYAN
2011E
CMS Superseded by CHATRCHYAN 2012AG
$> 247$ 95 92
ABAZOV
2010L
D0 Third generation
$> 316$ 95 93
ABAZOV
2009
D0 Second generation
$> 299$ 95 94
ABAZOV
2009AF
D0 Superseded by ABAZOV 2011V
95
AALTONEN
2008P
CDF Third generation
$> 153$ 95 96
AALTONEN
2008Z
CDF Third generation
$> 205$ 95 97
ABAZOV
2008AD
D0 All generations
$> 210$ 95 96
ABAZOV
2008AN
D0 Third generation
$> 229$ 95 98
ABAZOV
2007J
D0 Superseded by ABAZOV 2010L
$> 251$ 95 99
ABAZOV
2006A
D0 Superseded by ABAZOV 2009
$> 136$ 95 100
ABAZOV
2006L
D0 Superseded by ABAZOV 2008AD
$> 226$ 95 101
ABULENCIA
2006T
CDF Second generation
$> 256$ 95 102
ABAZOV
2005H
D0 First generation
$>117$ 95 97
ACOSTA
2005I
CDF First generation
$> 236$ 95 103
ACOSTA
2005P
CDF First generation
$>99$ 95 104
ABBIENDI
2003R
OPAL First generation
$>100$ 95 104
ABBIENDI
2003R
OPAL Second generation
$>98$ 95 104
ABBIENDI
2003R
OPAL Third generation
$>98$ 95 105
ABAZOV
2002
D0 All generations
$>225$ 95 106
ABAZOV
2001D
D0 First generation
$>85.8$ 95 107
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>85.5$ 95 107
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>82.7$ 95 107
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>200$ 95 108
ABBOTT
2000C
D0 Second generation
$>123$ 95 109
AFFOLDER
2000K
CDF Second generation
$> 148$ 95 110
AFFOLDER
2000K
CDF Third generation
$>160$ 95 111
ABBOTT
1999J
D0 Second generation
$>225$ 95 112
ABBOTT
1998E
D0 First generation
$>94$ 95 113
ABBOTT
1998J
D0 Third generation
$> 202$ 95 114
ABE
1998S
CDF Second generation
$>242$ 95 115
GROSS-PILCHER
1998
First generation
$>99$ 95 116
ABE
1997F
CDF Third generation
$>213$ 95 117
ABE
1997X
CDF First generation
$>45.5$ 95 118, 119
ABREU
1993J
DLPH First + second generation
$>44.4$ 95 120
ADRIANI
1993M
L3 First generation
$>44.5$ 95 120
ADRIANI
1993M
L3 Second generation
$>45$ 95 120
DECAMP
1992
ALEP Third generation
$\text{none 8.9 - 22.6}$ 95 121
KIM
1990
AMY First generation
$\text{none 10.2 - 23.2}$ 95 121
KIM
1990
AMY Second generation
$\text{none 5 - 20.8}$ 95 122
BARTEL
1987B
JADE
$\text{none 7 - 20.5}$ 95 123
BEHREND
1986B
CELL
1  AAD 2024AV search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion limit on $\sigma $.
2  AAD 2024AV search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion limit on $\sigma $.
3  AAD 2024AV search for ${{\mathit \kappa}}$ = 1 vector leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 11 for exclusion limit on $\sigma $. The limit becomes $\mathit M_{LQ}$ $>$ 1.67 TeV for minimal coupling vector LQ with ${{\mathit \kappa}}$ = 0.
4  AAD 2024AV search for ${{\mathit \kappa}}$ = 1 vector leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 11 for exclusion limit on $\sigma $. The limit becomes $\mathit M_{LQ}$ $>$ 1.67 TeV for minimal coupling vector LQ with ${{\mathit \kappa}}$ = 0.
5  AAD 2024O search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$.
6  AAD 2024O search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$.
7  AAD 2024O search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$ or ${{\mathit t}}{{\mathit \nu}}$. See their Fig. 2a for exclusion limit on ${{\mathit M}_{{{LQ}}}}$ as function of B(${{\mathit b}}{{\mathit \tau}}$).
8  AAD 2024O search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$ or ${{\mathit b}}{{\mathit \nu}}$. See their Fig. 2b for exclusion limit on ${{\mathit M}_{{{LQ}}}}$ as function of B(${{\mathit t}}{{\mathit \tau}}$).
9  AAD 2024O search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \mu}}$ or ${{\mathit t}}{{\mathit \nu}}$. See their Fig. 3a for exclusion limit on ${{\mathit M}_{{{LQ}}}}$ as function of B(${{\mathit b}}{{\mathit \mu}}$).
10  AAD 2024O search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$ or ${{\mathit b}}{{\mathit \nu}}$. See their Fig.4 a for exclusion limit on ${{\mathit M}_{{{LQ}}}}$ as function of B(${{\mathit t}}{{\mathit \mu}}$).
11  AAD 2024O search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit e}}$ or ${{\mathit t}}{{\mathit \nu}}$. See their Fig. 3b for exclusion limit on ${{\mathit M}_{{{LQ}}}}$ as function of B(${{\mathit b}}{{\mathit e}}$).
12  AAD 2024O search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$ or ${{\mathit b}}{{\mathit \nu}}$. See their Fig. 4b for exclusion limit on ${{\mathit M}_{{{LQ}}}}$ as function of B(${{\mathit t}}{{\mathit e}}$).
13  AAD 2024O search for vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ or ${{\mathit b}}{{\mathit \tau}}$ with ${{\mathit \kappa}}$ = 1. The limit becomes $>$ 1580 GeV for ${{\mathit \kappa}}$ = 0.
14  AAD 2024O search for vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ or ${{\mathit b}}{{\mathit \mu}}$ with ${{\mathit \kappa}}$ = 1. The limit becomes $>$ 1710 GeV for ${{\mathit \kappa}}$ = 0.
15  AAD 2024O search for vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ or ${{\mathit b}}{{\mathit e}}$ with ${{\mathit \kappa}}$ = 1. The limit becomes $>$ 1620 GeV for ${{\mathit \kappa}}$ = 0.
16  HAYRAPETYAN 2024O search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \mu}}$. See their Fig. 7 for exclusion limit on leptoquark pair production cross section as function of ${{\mathit M}_{{{LQ}}}}$.
17  HAYRAPETYAN 2024O search for ${{\mathit \kappa}}$ = 1 vector leptoquarks decaying to ${{\mathit b}}{{\mathit \mu}}$. The limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 2120 GeV for ${{\mathit \kappa}}$ = 0.
18  HAYRAPETYAN 2024Z search for scalar and vector leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$ and produced through single, pair, and nonresonantly in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above assumes scalar leptoquarks with B(${{\mathit b}}{{\mathit \tau}}$) = 1 and leptoquark coupling strength ${{\mathit \lambda}}$ = 0. See their Fig. 7 for limits in mass-coupling plane.
19  HAYRAPETYAN 2024Z search for scalar and vector leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$ and produced through single, pair, and nonresonantly in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above assumes ${{\mathit \kappa}}$ = 1 vector leptoquarks with B(${{\mathit b}}{{\mathit \tau}}$) = 1 and leptoquark coupling strength ${{\mathit \lambda}}$ = 0. See their Fig. 8 for limits in mass-coupling plane and for limits with ${{\mathit \kappa}}$ = 0.
20  AAD 2023BJ search for scalar leptoquarks decaying to ${{\mathit c}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for exclusion limit on $\sigma $ as function of ${{\mathit M}_{{{LQ}}}}$.
21  AAD 2023CF search for scalar and vector leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$. The limit quoted above is for scalar leptoquark. See their Fig. 9 for limits on leptoquark pair production cross sections.
22  AAD 2023CF search for scalar and vector leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$. The limit quoted above is for vector leptoquark with ${{\mathit \kappa}}$ = 1. The limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1650 for vector leptoquark with ${{\mathit \kappa}}$ = 0. See their Fig. 9 for limits on leptoquark pair production cross sections.
23  AAD 2023F search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit \mu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion contour in B(${{\mathit b}}{{\mathit \mu}})−{{\mathit M}_{{{LQ}}}}$ plane.
24  AAD 2023F search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit e}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion contour in B(${{\mathit b}}{{\mathit e}})−{{\mathit M}_{{{LQ}}}}$ plane.
25  AAD 2023F search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$ and ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion contour in B(${{\mathit t}}{{\mathit \mu}})−{{\mathit M}_{{{LQ}}}}$ plane.
26  AAD 2023F search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$ and ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion contour in B(${{\mathit t}}{{\mathit e}})−{{\mathit M}_{{{LQ}}}}$ plane.
27  AAD 2023F search for ${{\mathit \kappa}}$ = 1 (YM coupling) vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit \mu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. If ${{\mathit \kappa}}$ = 0 (minimal coupling) is assumed, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1710 GeV. See their Fig. 10 for exclusion contour in B(${{\mathit b}}{{\mathit \mu}})−{{\mathit M}_{{{LQ}}}}$ plane.
28  AAD 2023F search for ${{\mathit \kappa}}$ = 1 (YM coupling) vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit e}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. If ${{\mathit \kappa}}$ = 0 (minimal coupling) is assumed, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1620 GeV. See their Fig. 10 for exclusion contour in B(${{\mathit b}}{{\mathit e}})−{{\mathit M}_{{{LQ}}}}$ plane.
29  TUMASYAN 2022H search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of ${{\mathit M}_{{{LQ}}}}$.
30  TUMASYAN 2022H search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of ${{\mathit M}_{{{LQ}}}}$.
31  TUMASYAN 2022H search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of ${{\mathit M}_{{{LQ}}}}$.
32  AAD 2021AG search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$. See their Fig. 6 for exclusion limit on B(${{\mathit t}}{{\mathit e}}$) as function of ${{\mathit M}_{{{LQ}}}}$.
33  AAD 2021AG search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$. See their Fig. 6 for exclusion limit on B(${{\mathit t}}{{\mathit \mu}}$) as function of ${{\mathit M}_{{{LQ}}}}$.
34  AAD 2021AW search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$. See their Fig. 9 for exclusion contour in B(${{\mathit b}}{{\mathit \tau}})−{{\mathit M}_{{{LQ}}}}$ plane.
35  AAD 2021AW search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$. See their Fig. 9 for exclusion contour in B(${{\mathit t}}{{\mathit \tau}})−{{\mathit M}_{{{LQ}}}}$ plane.
36  AAD 2021AW search for ${{\mathit \kappa}}$ = 1 vector leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$. See their Fig. 10 for exclusion contour in B(${{\mathit b}}{{\mathit \tau}})−{{\mathit M}_{{{LQ}}}}$ plane and for limit on ${{\mathit \kappa}}$ = 0 vector leptoquarks.
37  AAD 2021S search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit b}}{{\mathit \nu}}$) = 1. For B(${{\mathit b}}{{\mathit \nu}}$) = 0.05, the limit becomes 400 GeV.
38  AAD 2021T search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit t}}{{\mathit \tau}}$) = 1. For B(${{\mathit t}}{{\mathit \tau}}$) = 0.5, the limit becomes 1220 GeV. See their Fig. 15b for limits on B(${{\mathit t}}{{\mathit \tau}}$) as a function of leptoquark mass.
39  SIRUNYAN 2021J search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$ and ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
40  SIRUNYAN 2021J search for vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above assumes ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1290 GeV.
41  AAD 2020AK search for scalar leptoquarks decaying to ${{\mathit e}}{{\mathit q}}$, ${{\mathit e}}{{\mathit b}}$, ${{\mathit e}}{{\mathit c}}$, ${{\mathit \mu}}{{\mathit q}}$, ${{\mathit \mu}}{{\mathit b}}$, ${{\mathit \mu}}{{\mathit c}}$. The quoted limit assumes B(${{\mathit e}}{{\mathit q}}$) = 1. See their Fig. 9 for limits on B(${{\mathit e}}{{\mathit q}}$), B(${{\mathit e}}{{\mathit b}}$), B(${{\mathit e}}{{\mathit c}}$), B(${{\mathit \mu}}{{\mathit q}}$), B(${{\mathit \mu}}{{\mathit b}}$), B(${{\mathit \mu}}{{\mathit c}}$) as a function of leptoquark mass.
42  AAD 2020AK search for scalar leptoquarks decaying to ${{\mathit e}}{{\mathit q}}$, ${{\mathit e}}{{\mathit b}}$, ${{\mathit e}}{{\mathit c}}$, ${{\mathit \mu}}{{\mathit q}}$, ${{\mathit \mu}}{{\mathit b}}$, ${{\mathit \mu}}{{\mathit c}}$. The quoted limit assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. See their Fig. 9 for limits on B(${{\mathit e}}{{\mathit q}}$), B(${{\mathit e}}{{\mathit b}}$), B(${{\mathit e}}{{\mathit c}}$), B(${{\mathit \mu}}{{\mathit q}}$), B(${{\mathit \mu}}{{\mathit b}}$), B(${{\mathit \mu}}{{\mathit c}}$) as a function of leptoquark mass.
43  AAD 2020S search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
44  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B(${{\mathit \nu}}{{\mathit b}}$) = 1.
45  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B(${{\mathit \nu}}{{\mathit t}}$) = 1.
46  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B(${{\mathit \nu}}{{\mathit q}}$) = 1.
47  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B(${{\mathit \nu}}{{\mathit b}}$) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1560 GeV.
48  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B(${{\mathit \nu}}{{\mathit t}}$) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1475 GeV.
49  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B(${{\mathit \nu}}{{\mathit q}}$) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1560 GeV.
50  AABOUD 2019AX search for leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1.
51  AABOUD 2019AX search for leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1.
52  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
53  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
54  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
55  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
56  SIRUNYAN 2019BI search for a pair of scalar leptoquarks decaying to ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and to ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Limits are shown as a function of ${{\mathit \beta}}$ where ${{\mathit \beta}}$ is the branching fraction to a muon and a quark. For ${{\mathit \beta}}$ = 1.0 (0.5) LQ masses up to 1530 (1285) GeV are excluded. See Fig. 9 for exclusion limits in the plane of ${{\mathit \beta}}$ and LQ mass.
57  SIRUNYAN 2019BJ search for a pair of scalar leptoquarks decaying to ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Limits are shown as a function of the branching fraction $\beta $ to an electron and a quark. For $\beta $ = 1.0 (0.5) LQ masses up to 1435 (1270) GeV are excluded. See Fig. 9 for exclusion limits in the plane of $\beta $ and LQ mass.
58  SIRUNYAN 2019Y search for a pair of third generation scalar leptoquarks, each decaying to ${{\mathit \tau}}$ and a jet. Assuming B(${{\mathit \tau}}{{\mathit b}}$) = 1, leptoquark masses below 1.02 TeV are excluded.
59  SIRUNYAN 2018CZ search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit t}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit t}}$) = 1.
60  SIRUNYAN 2018EC set limits for scalar and vector leptoquarks decaying to ${{\mathit \mu}}{{\mathit t}}$, ${{\mathit \tau}}{{\mathit t}}$, and ${{\mathit \nu}}{{\mathit b}}$. The limit quoted above assumes scalar leptoquark with B(${{\mathit \mu}}{{\mathit t}}$) = 1.
61  SIRUNYAN 2018EC set limits for scalar and vector leptoquarks decaying to ${{\mathit \mu}}{{\mathit t}}$, ${{\mathit \tau}}{{\mathit t}}$, and ${{\mathit \nu}}{{\mathit b}}$. The limit quoted above assumes vector leptoquark with all possible combinations of branching fractions to ${{\mathit \mu}}{{\mathit t}}$, ${{\mathit \tau}}{{\mathit t}}$, and ${{\mathit \nu}}{{\mathit b}}$.
62  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. The limit quoted above assumes scalar leptoquark with B(${{\mathit b}}{{\mathit \nu}}$) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1810 GeV.
63  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. The limit quoted above assumes scalar leptoquark with B(${{\mathit q}}{{\mathit \nu}}$) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1790 GeV.
64  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. The limit quoted above assumes scalar leptoquark with B(${{\mathit \nu}}{{\mathit t}}$) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1780 GeV.
65  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit b}}{{\mathit \nu}}$ are assumed.
66  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit q}}{{\mathit \nu}}$ with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$ are assumed.
67  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$ are assumed.
68  KHACHATRYAN 2017J search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1.
69  SIRUNYAN 2017H search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1.
70  AAD 2016G search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B({{\mathit e}}{{\mathit q}}$) = 1.
71  AAD 2016G search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B({{\mathit \mu}}{{\mathit q}}$) = 1.
72  AAD 2016G search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$. The limit above assumes $\mathit B({{\mathit b}}{{\mathit \nu}}$) = 1.
73  AAD 2016G search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$. The limit above assumes $\mathit B({{\mathit t}}{{\mathit \nu}}$) = 1.
74  KHACHATRYAN 2016AF search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$)= 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5, the limit becomes 850 GeV.
75  KHACHATRYAN 2016AF search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 760 GeV.
76  KHACHATRYAN 2015AJ search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit t}}{{\mathit t}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B({{\mathit \tau}}{{\mathit t}}$) = 1.
77  KHACHATRYAN 2014T search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1. See their Fig. 5 for the exclusion limit as function of B(${{\mathit \tau}}{{\mathit b}}$).
78  SIRUNYAN 2019BC search for scalar leptoquark (LQ) pair production in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. One LQ is assumed to decay to ${{\mathit \mu}}{{\mathit q}}$, while the other decays to dark matter pair and SM particles. See their Fig. 4 for limits in $\mathit M_{{\mathrm {LQ}}}−\mathit M_{{\mathrm {DM}}}$ plane.
79  AAD 2013AE search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7$~$TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1.
80  CHATRCHYAN 2013M search for scalar and vector leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above is for scalar leptoquarks with B(${{\mathit \tau}}{{\mathit b}}$) = 1.
81  AAD 2012H search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}$ ${{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5, the limit becomes 607 GeV.
82  AAD 2012O search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 594 GeV.
83  CHATRCHYAN 2012AG search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5, the limit becomes 640 GeV.
84  CHATRCHYAN 2012AG search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 650 GeV.
85  CHATRCHYAN 2012BO search for scalar leptoquarks decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit b}}$) = 1.
86  AAD 2011D search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV.The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5, the limit becomes 319 GeV.
87  AAD 2011D search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 362 GeV.
88  ABAZOV 2011V search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 0.5.
89  CHATRCHYAN 2011N search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 0.5.
90  KHACHATRYAN 2011D search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1.
91  KHACHATRYAN 2011E search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1.
92  ABAZOV 2010L search for pair productions of scalar leptoquark state decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit b}}$) = 1.
93  ABAZOV 2009 search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 270 GeV.
94  ABAZOV 2009AF search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5 the bound becomes 284 GeV.
95  AALTONEN 2008P search for vector leptoquarks using ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Assuming Yang-Mills (minimal) couplings, the mass limit is $>$317 GeV (251 GeV) at 95$\%$ CL for B(${{\mathit \tau}}{{\mathit b}}$) = 1.
96  Search for pair production of scalar leptoquark state decaying to ${{\mathit \tau}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= 1.96 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1.
97  Search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit q}}$) = 1.
98  ABAZOV 2007J search for pair productions of scalar leptoquark state decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit b}}$) = 1.
99  ABAZOV 2006A search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8 TeV and 1.96 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 204 GeV.
100  ABAZOV 2006L search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8$~$TeV and at 1.96$~$TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit q}}$) = 1.
101  ABULENCIA 2006T search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96$~$TeV. The quoted limit assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5 or 0.1, the bound becomes 208$~$GeV or 143$~$GeV, respectively. See their Fig.$~$4 for the exclusion limit as a function of B(${{\mathit \mu}}{{\mathit q}}$).
102  ABAZOV 2005H search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8 TeV and 1.96 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5 the bound becomes 234 GeV.
103  ACOSTA 2005P search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$, ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5 and 0.1, the bound becomes 205 GeV and 145 GeV, respectively.
104  ABBIENDI 2003R search for scalar/vector leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = $189 - 209$ GeV. The quoted limits are for charge $−$4/3 isospin 0 scalar-leptoquark with B(${{\mathit \ell}}{{\mathit q}}$) = 1. See their table 12 for other cases.
105  ABAZOV 2002 search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The bound holds for all leptoquark generations. Vector leptoquarks are likewise constrained to lie above 200 GeV.
106  ABAZOV 2001D search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$)=1. For B(${{\mathit e}}{{\mathit q}})=0.5$ and 0, the bound becomes 204 and 79$~$GeV, respectively. Bounds for vector leptoquarks are also given. Supersedes ABBOTT 1998E.
107  ABBIENDI 2000M search for scalar/vector leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }$=183 GeV. The quoted limits are for charge $-4$/3 isospin$~$0 scalar-leptoquarks with B(${{\mathit \ell}}{{\mathit q}}$)=1. See their Table$~$8 and Figs.$~6 - 9$ for other cases.
108  ABBOTT 2000C search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$)=1. For B(${{\mathit \mu}}{{\mathit q}}$)=0.5 and 0, the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also given.
109  AFFOLDER 2000K search for scalar leptoquark using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit c}}{{\mathit c}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The quoted limit assumes B(${{\mathit \nu}}{{\mathit c}}$)=1. Bounds for vector leptoquarks are also given.
110  AFFOLDER 2000K search for scalar leptoquark using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The quoted limit assumes B(${{\mathit \nu}}{{\mathit b}}$)=1. Bounds for vector leptoquarks are also given.
111  ABBOTT 1999J search for leptoquarks using ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8$TeV. The quoted limit is for a scalar leptoquark with B(${{\mathit \mu}}{{\mathit q}}$) = B(${{\mathit \nu}}{{\mathit q}}$) = $0.5$. Limits on vector leptoquarks range from 240 to 290 GeV.
112  ABBOTT 1998E search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$)=1. For B(${{\mathit e}}{{\mathit q}})=0.5$ and 0, the bound becomes 204 and 79 GeV, respectively.
113  ABBOTT 1998J search for charge $−$1/3 third generation scalar and vector leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8$ TeV. The quoted limit is for scalar leptoquark with B(${{\mathit \nu}}{{\mathit b}}$)=1.
114  ABE 1998S search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8~$TeV. The limit is for B(${{\mathit \mu}}{{\mathit q}}$)= 1. For B(${{\mathit \mu}}{{\mathit q}})=B({{\mathit \nu}}{{\mathit q}})=0.5$, the limit is $>160$ GeV.
115  GROSS-PILCHER 1998 is the combined limit of the CDF and ${D0}$ Collaborations as determined by a joint CDF/${D0}$ working group and reported in this FNAL Technical Memo. Original data published in ABE 1997X and ABBOTT 1998E.
116  ABE 1997F search for third generation scalar and vector leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = $1.8$ TeV. The quoted limit is for scalar leptoquark with B(${{\mathit \tau}}{{\mathit b}}$) = 1.
117  ABE 1997X search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV. The limit is for B(${{\mathit e}}{{\mathit q}}$)=1.
118  Limit is for charge $−$1/3 isospin-0 leptoquark with B(${{\mathit \ell}}{{\mathit q}}$) = 2/3.
119  First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.
120  Limits are for charge $−$1/3, isospin-0 scalar leptoquarks decaying to ${{\mathit \ell}^{-}}{{\mathit q}}$ or ${{\mathit \nu}}{{\mathit q}}$ with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
121  KIM 1990 assume pair production of charge 2/3 scalar-leptoquark via photon exchange. The decay of the first (second) generation leptoquark is assumed to be any mixture of ${{\mathit d}}{{\mathit e}^{+}}$ and ${{\mathit u}}{{\overline{\mathit \nu}}}$ (${{\mathit s}}{{\mathit \mu}^{+}}$ and ${{\mathit c}}{{\overline{\mathit \nu}}}$). See paper for limits for specific branching ratios.
122  BARTEL 1987B limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint B(X $\rightarrow$ ${{\mathit c}}{{\overline{\mathit \nu}}_{{{\mu}}}}$) $+$ B(X $\rightarrow$ ${{\mathit s}}{{\mathit \mu}^{+}}$) = 1.
123  BEHREND 1986B assumed that a charge 2/3 spinless leptoquark, ${{\mathit \chi}}$, decays either into ${\mathit {\mathit s}}$ ${{\mathit \mu}^{+}}$ or ${\mathit {\mathit c}}$ ${{\overline{\mathit \nu}}}$: B(${{\mathit \chi}}$ $\rightarrow$ ${\mathit {\mathit s}}$ ${{\mathit \mu}^{+}}$) $+$ B(${{\mathit \chi}}$ $\rightarrow$ ${\mathit {\mathit c}}$ ${{\overline{\mathit \nu}}}$) = 1.
References