MASS LIMITS for Leptoquarks from Pair Production INSPIRE search

These limits rely only on the color or electroweak charge of the leptoquark.

VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$> 1185$ 95 1
SIRUNYAN
2020A
CMS Scalar LQ. B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1
$> 1140$ 95 2
SIRUNYAN
2020A
CMS Scalar LQ. B( ${{\mathit \nu}}{{\mathit t}}$ ) = 1
$> 1140$ 95 3
SIRUNYAN
2020A
CMS Scalar LQ. B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1 with ${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$
$> 1925$ 95 4
SIRUNYAN
2020A
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1
$> 1825$ 95 5
SIRUNYAN
2020A
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B( ${{\mathit \nu}}{{\mathit t}}$ ) = 1
$> 1980$ 95 6
SIRUNYAN
2020A
CMS Vecotr LQ. ${{\mathit \kappa}}$ = 1. B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1 with ${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$
$> 1400$ 95 7
AABOUD
2019AX
ATLS Scalar LQ. B( ${{\mathit e}}{{\mathit q}}$ ) = 1
$> 1560$ 95 8
AABOUD
2019AX
ATLS Scalar LQ. B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1
$>1000$ 95 9
AABOUD
2019X
ATLS Scalar LQ. B( ${{\mathit t}}{{\mathit \nu}}$ ) = 1
$>1030$ 95 10
AABOUD
2019X
ATLS Scalar LQ. B( ${{\mathit b}}{{\mathit \tau}}$ ) = 1
$>970$ 95 11
AABOUD
2019X
ATLS Scalar LQ. B( ${{\mathit b}}{{\mathit \nu}}$ ) = 1
$>920$ 95 12
AABOUD
2019X
ATLS Scalar LQ. B( ${{\mathit t}}{{\mathit \tau}}$ ) = 1
$> 1530$ 95 13
SIRUNYAN
2019BI
CMS Scalar LQ. B( ${{\mathit \mu}}{{\mathit q}}$ )+B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1
$> 1435$ 95 14
SIRUNYAN
2019BJ
CMS Scalar LQ. B( ${{\mathit e}}{{\mathit q}}$ )+B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1
$> 1020$ 95 15
SIRUNYAN
2019Y
CMS Scalar LQ. B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1
$\bf{\text{none 300 - 900}}$ 95 16
SIRUNYAN
2018CZ
CMS Scalar LQ. B( ${{\mathit \tau}}{{\mathit t}}$ ) = 1
$\bf{> 1420}$ 95 17
SIRUNYAN
2018EC
CMS Scalar LQ. B( ${{\mathit \mu}}{{\mathit t}}$ ) = 1
$> 1190$ 95 18
SIRUNYAN
2018EC
CMS Vector LQ. ${{\mathit \mu}}{{\mathit t}}$ , ${{\mathit \tau}}{{\mathit t}}$ , ${{\mathit \nu}}{{\mathit b}}$
$> 1100$ 95 19
SIRUNYAN
2018U
CMS Scalar LQ. B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1
$> 980$ 95 20
SIRUNYAN
2018U
CMS Scalar LQ. B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1 with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$
$> 1020$ 95 21
SIRUNYAN
2018U
CMS Scalar LQ. B( ${{\mathit \nu}}{{\mathit t}}$ ) = 1
$>1810$ 95 22
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit b}}{{\mathit \nu}}$
$>1790$ 95 23
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit q}}{{\mathit \nu}}$ with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$
$>1780$ 95 24
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$
$>740$ 95 25
KHACHATRYAN
2017J
CMS Scalar LQ. B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1
$> 850$ 95 26
SIRUNYAN
2017H
CMS Scalar LQ. B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1
$\bf{> 1050}$ 95 27
AAD
2016G
ATLS Scalar LQ. B( ${{\mathit e}}{{\mathit q}}$ ) = 1
$> 1000$ 95 28
AAD
2016G
ATLS Scalar LQ. B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1
$> 625$ 95 29
AAD
2016G
ATLS Scalar LQ. B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1
$\text{none 200 - 640}$ 95 30
AAD
2016G
ATLS Scalar LQ. B( ${{\mathit \nu}}{{\mathit t}}$ ) = 1
$> 1010$ 95 31
KHACHATRYAN
2016AF
CMS Scalar LQ. B( ${{\mathit e}}{{\mathit q}}$ ) = 1
$> 1080$ 95 32
KHACHATRYAN
2016AF
CMS Scalar LQ. B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1
$> 685$ 95 33
KHACHATRYAN
2015AJ
CMS Scalar LQ. B( ${{\mathit \tau}}{{\mathit t}}$ ) = 1
$> 740$ 95 34
KHACHATRYAN
2014T
CMS Scalar LQ. B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1
• • • We do not use the following data for averages, fits, limits, etc. • • •
35
SIRUNYAN
2019BC
CMS Scalar LQ ( $\rightarrow$ ${{\mathit \mu}}{{\mathit q}}$ ) LQ ( $\rightarrow$ ${{\mathit X}}$ + DM)
$> 534$ 95 36
AAD
2013AE
ATLS Third generation
$> 525$ 95 37
CHATRCHYAN
2013M
CMS Third generation
$> 660$ 95 38
AAD
2012H
ATLS First generation
$> 685$ 95 39
AAD
2012O
ATLS Second generation
$> 830$ 95 40
CHATRCHYAN
2012AG
CMS First generation
$> 840$ 95 41
CHATRCHYAN
2012AG
CMS Second generation
$> 450$ 95 42
CHATRCHYAN
2012BO
CMS Third generation
$> 376$ 95 43
AAD
2011D
ATLS Superseded by AAD 2012H
$> 422$ 95 44
AAD
2011D
ATLS Superseded by AAD 2012O
$> 326$ 95 45
ABAZOV
2011V
D0 First generation
$> 339$ 95 46
CHATRCHYAN
2011N
CMS Superseded by CHATRCHYAN 2012AG
$> 384$ 95 47
KHACHATRYAN
2011D
CMS Superseded by CHATRCHYAN 2012AG
$> 394$ 95 48
KHACHATRYAN
2011E
CMS Superseded by CHATRCHYAN 2012AG
$> 247$ 95 49
ABAZOV
2010L
D0 Third generation
$> 316$ 95 50
ABAZOV
2009
D0 Second generation
$> 299$ 95 51
ABAZOV
2009AF
D0 Superseded by ABAZOV 2011V
52
AALTONEN
2008P
CDF Third generation
$> 153$ 95 53
AALTONEN
2008Z
CDF Third generation
$> 205$ 95 54
ABAZOV
2008AD
D0 All generations
$> 210$ 95 53
ABAZOV
2008AN
D0 Third generation
$> 229$ 95 55
ABAZOV
2007J
D0 Superseded by ABAZOV 2010L
$> 251$ 95 56
ABAZOV
2006A
D0 Superseded by ABAZOV 2009
$> 136$ 95 57
ABAZOV
2006L
D0 Superseded by ABAZOV 2008AD
$> 226$ 95 58
ABULENCIA
2006T
CDF Second generation
$> 256$ 95 59
ABAZOV
2005H
D0 First generation
$>117$ 95 54
ACOSTA
2005I
CDF First generation
$> 236$ 95 60
ACOSTA
2005P
CDF First generation
$>99$ 95 61
ABBIENDI
2003R
OPAL First generation
$>100$ 95 61
ABBIENDI
2003R
OPAL Second generation
$>98$ 95 61
ABBIENDI
2003R
OPAL Third generation
$>98$ 95 62
ABAZOV
2002
D0 All generations
$>225$ 95 63
ABAZOV
2001D
D0 First generation
$>85.8$ 95 64
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>85.5$ 95 64
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>82.7$ 95 64
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>200$ 95 65
ABBOTT
2000C
D0 Second generation
$>123$ 95 66
AFFOLDER
2000K
CDF Second generation
$> 148$ 95 67
AFFOLDER
2000K
CDF Third generation
$>160$ 95 68
ABBOTT
1999J
D0 Second generation
$>225$ 95 69
ABBOTT
1998E
D0 First generation
$>94$ 95 70
ABBOTT
1998J
D0 Third generation
$> 202$ 95 71
ABE
1998S
CDF Second generation
$>242$ 95 72
GROSS-PILCHER
1998
First generation
$>99$ 95 73
ABE
1997F
CDF Third generation
$>213$ 95 74
ABE
1997X
CDF First generation
$>45.5$ 95 75, 76
ABREU
1993J
DLPH First + second generation
$>44.4$ 95 77
ADRIANI
1993M
L3 First generation
$>44.5$ 95 77
ADRIANI
1993M
L3 Second generation
$>45$ 95 77
DECAMP
1992
ALEP Third generation
$\text{none 8.9 - 22.6}$ 95 78
KIM
1990
AMY First generation
$\text{none 10.2 - 23.2}$ 95 78
KIM
1990
AMY Second generation
$\text{none 5 - 20.8}$ 95 79
BARTEL
1987B
JADE
$\text{none 7 - 20.5}$ 95 80
BEHREND
1986B
CELL
1  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1.
2  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B( ${{\mathit \nu}}{{\mathit t}}$ ) = 1.
3  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1.
4  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{LQ}}}$ $>$ 1560 GeV.
5  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B( ${{\mathit \nu}}{{\mathit t}}$ ) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{LQ}}}$ $>$ 1475 GeV.
6  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{LQ}}}$ $>$ 1560 GeV.
7  AABOUD 2019AX search for leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1.
8  AABOUD 2019AX search for leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1.
9  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
10  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
11  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
12  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
13  SIRUNYAN 2019BI search for a pair of scalar leptoquarks decaying to ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and to ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Limits are shown as a function of ${{\mathit \beta}}$ where ${{\mathit \beta}}$ is the branching fraction to a muon and a quark. For ${{\mathit \beta}}$ = 1.0 (0.5) LQ masses up to 1530 (1285) GeV are excluded. See Fig. 9 for exclusion limits in the plane of ${{\mathit \beta}}$ and LQ mass.
14  SIRUNYAN 2019BJ search for a pair of scalar leptoquarks decaying to ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Limits are shown as a function of the branching fraction $\beta $ to an electron and a quark. For $\beta $ = 1.0 (0.5) LQ masses up to 1435 (1270) GeV are excluded. See Fig. 9 for exclusion limits in the plane of $\beta $ and LQ mass.
15  SIRUNYAN 2019Y search for a pair of third generation scalar leptoquarks, each decaying to ${{\mathit \tau}}$ and a jet. Assuming B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1, leptoquark masses below 1.02 TeV are excluded.
16  SIRUNYAN 2018CZ search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit t}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit t}}$ ) = 1.
17  SIRUNYAN 2018EC set limits for scalar and vector leptoquarks decaying to ${{\mathit \mu}}{{\mathit t}}$ , ${{\mathit \tau}}{{\mathit t}}$ , and ${{\mathit \nu}}{{\mathit b}}$ . The limit quoted above assumes scalar leptoquark with B( ${{\mathit \mu}}{{\mathit t}}$ ) = 1.
18  SIRUNYAN 2018EC set limits for scalar and vector leptoquarks decaying to ${{\mathit \mu}}{{\mathit t}}$ , ${{\mathit \tau}}{{\mathit t}}$ , and ${{\mathit \nu}}{{\mathit b}}$ . The limit quoted above assumes vector leptoquark with all possible combinations of branching fractions to ${{\mathit \mu}}{{\mathit t}}$ , ${{\mathit \tau}}{{\mathit t}}$ , and ${{\mathit \nu}}{{\mathit b}}$ .
19  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ . The limit quoted above assumes scalar leptoquark with B( ${{\mathit b}}{{\mathit \nu}}$ ) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1810 GeV.
20  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ . The limit quoted above assumes scalar leptoquark with B( ${{\mathit q}}{{\mathit \nu}}$ ) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1790 GeV.
21  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ . The limit quoted above assumes scalar leptoquark with B( ${{\mathit \nu}}{{\mathit t}}$ ) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1780 GeV.
22  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ . ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit b}}{{\mathit \nu}}$ are assumed.
23  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ . ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit q}}{{\mathit \nu}}$ with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$ are assumed.
24  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ , ${{\mathit b}}{{\mathit \nu}}$ , and ${{\mathit q}}{{\mathit \nu}}$ . ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$ are assumed.
25  KHACHATRYAN 2017J search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
26  SIRUNYAN 2017H search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
27  AAD 2016G search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B$( ${{\mathit e}}{{\mathit q}}$ ) = 1.
28  AAD 2016G search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B$( ${{\mathit \mu}}{{\mathit q}}$ ) = 1.
29  AAD 2016G search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$ . The limit above assumes $\mathit B$( ${{\mathit b}}{{\mathit \nu}}$ ) = 1.
30  AAD 2016G search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ . The limit above assumes $\mathit B$( ${{\mathit t}}{{\mathit \nu}}$ ) = 1.
31  KHACHATRYAN 2016AF search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ )= 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5, the limit becomes 850 GeV.
32  KHACHATRYAN 2016AF search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 760 GeV.
33  KHACHATRYAN 2015AJ search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit t}}{{\mathit t}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B$( ${{\mathit \tau}}{{\mathit t}}$ ) = 1.
34  KHACHATRYAN 2014T search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1. See their Fig. 5 for the exclusion limit as function of B( ${{\mathit \tau}}{{\mathit b}}$ ).
35  SIRUNYAN 2019BC search for scalar leptoquark (LQ) pair production in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. One LQ is assumed to decay to ${{\mathit \mu}}{{\mathit q}}$ , while the other decays to dark matter pair and SM particles. See their Fig. 4 for limits in $\mathit M_{{\mathrm {LQ}}}−\mathit M_{{\mathrm {DM}}}$ plane.
36  AAD 2013AE search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7$~$TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
37  CHATRCHYAN 2013M search for scalar and vector leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above is for scalar leptoquarks with B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
38  AAD 2012H search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}$ ${{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5, the limit becomes 607 GeV.
39  AAD 2012O search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 594 GeV.
40  CHATRCHYAN 2012AG search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5, the limit becomes 640 GeV.
41  CHATRCHYAN 2012AG search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 650 GeV.
42  CHATRCHYAN 2012BO search for scalar leptoquarks decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1.
43  AAD 2011D search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV.The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5, the limit becomes 319 GeV.
44  AAD 2011D search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 362 GeV.
45  ABAZOV 2011V search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5.
46  CHATRCHYAN 2011N search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5.
47  KHACHATRYAN 2011D search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1.
48  KHACHATRYAN 2011E search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1.
49  ABAZOV 2010L search for pair productions of scalar leptoquark state decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1.
50  ABAZOV 2009 search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 270 GeV.
51  ABAZOV 2009AF search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5 the bound becomes 284 GeV.
52  AALTONEN 2008P search for vector leptoquarks using ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Assuming Yang-Mills (minimal) couplings, the mass limit is $>$317 GeV (251 GeV) at 95$\%$ CL for B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
53  Search for pair production of scalar leptoquark state decaying to ${{\mathit \tau}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= 1.96 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
54  Search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1.
55  ABAZOV 2007J search for pair productions of scalar leptoquark state decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1.
56  ABAZOV 2006A search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8 TeV and 1.96 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 204 GeV.
57  ABAZOV 2006L search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8$~$TeV and at 1.96$~$TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1.
58  ABULENCIA 2006T search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96$~$TeV. The quoted limit assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5 or 0.1, the bound becomes 208$~$GeV or 143$~$GeV, respectively. See their Fig.$~$4 for the exclusion limit as a function of B( ${{\mathit \mu}}{{\mathit q}}$ ).
59  ABAZOV 2005H search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8 TeV and 1.96 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5 the bound becomes 234 GeV.
60  ACOSTA 2005P search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5 and 0.1, the bound becomes 205 GeV and 145 GeV, respectively.
61  ABBIENDI 2003R search for scalar/vector leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = $189 - 209$ GeV. The quoted limits are for charge $−$4/3 isospin 0 scalar-leptoquark with B( ${{\mathit \ell}}{{\mathit q}}$ ) = 1. See their table 12 for other cases.
62  ABAZOV 2002 search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The bound holds for all leptoquark generations. Vector leptoquarks are likewise constrained to lie above 200 GeV.
63  ABAZOV 2001D search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ )=1. For B( ${{\mathit e}}{{\mathit q}}$ )=$0.5$ and 0, the bound becomes 204 and 79$~$GeV, respectively. Bounds for vector leptoquarks are also given. Supersedes ABBOTT 1998E.
64  ABBIENDI 2000M search for scalar/vector leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }$=183 GeV. The quoted limits are for charge $-4$/3 isospin$~$0 scalar-leptoquarks with B( ${{\mathit \ell}}{{\mathit q}}$ )=1. See their Table$~$8 and Figs.$~6 - 9$ for other cases.
65  ABBOTT 2000C search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ )=1. For B( ${{\mathit \mu}}{{\mathit q}}$ )=0.5 and 0, the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also given.
66  AFFOLDER 2000K search for scalar leptoquark using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit c}}{{\mathit c}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The quoted limit assumes B( ${{\mathit \nu}}{{\mathit c}}$ )=1. Bounds for vector leptoquarks are also given.
67  AFFOLDER 2000K search for scalar leptoquark using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The quoted limit assumes B( ${{\mathit \nu}}{{\mathit b}}$ )=1. Bounds for vector leptoquarks are also given.
68  ABBOTT 1999J search for leptoquarks using ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8$TeV. The quoted limit is for a scalar leptoquark with B( ${{\mathit \mu}}{{\mathit q}}$ ) = B( ${{\mathit \nu}}{{\mathit q}}$ ) = $0.5$. Limits on vector leptoquarks range from 240 to 290 GeV.
69  ABBOTT 1998E search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ )=1. For B( ${{\mathit e}}{{\mathit q}}$ )=$0.5$ and 0, the bound becomes 204 and 79 GeV, respectively.
70  ABBOTT 1998J search for charge $−$1/3 third generation scalar and vector leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8$ TeV. The quoted limit is for scalar leptoquark with B( ${{\mathit \nu}}{{\mathit b}}$ )=1.
71  ABE 1998S search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8~$TeV. The limit is for B( ${{\mathit \mu}}{{\mathit q}}$ )= 1. For B( ${{\mathit \mu}}{{\mathit q}}$ )=B( ${{\mathit \nu}}{{\mathit q}}$ )=$0.5$, the limit is $>160$ GeV.
72  GROSS-PILCHER 1998 is the combined limit of the CDF and ${D0}$ Collaborations as determined by a joint CDF/${D0}$ working group and reported in this FNAL Technical Memo. Original data published in ABE 1997X and ABBOTT 1998E.
73  ABE 1997F search for third generation scalar and vector leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = $1.8$ TeV. The quoted limit is for scalar leptoquark with B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
74  ABE 1997X search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV. The limit is for B( ${{\mathit e}}{{\mathit q}}$ )=1.
75  Limit is for charge $−$1/3 isospin-0 leptoquark with B( ${{\mathit \ell}}{{\mathit q}}$ ) = 2/3.
76  First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.
77  Limits are for charge $−$1/3, isospin-0 scalar leptoquarks decaying to ${{\mathit \ell}^{-}}{{\mathit q}}$ or ${{\mathit \nu}}{{\mathit q}}$ with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
78  KIM 1990 assume pair production of charge 2/3 scalar-leptoquark via photon exchange. The decay of the first (second) generation leptoquark is assumed to be any mixture of ${{\mathit d}}{{\mathit e}^{+}}$ and ${{\mathit u}}{{\overline{\mathit \nu}}}$ ( ${{\mathit s}}{{\mathit \mu}^{+}}$ and ${{\mathit c}}{{\overline{\mathit \nu}}}$ ). See paper for limits for specific branching ratios.
79  BARTEL 1987B limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint B( X $\rightarrow$ ${{\mathit c}}{{\overline{\mathit \nu}}_{{\mu}}}$ ) $+$ B( X $\rightarrow$ ${{\mathit s}}{{\mathit \mu}^{+}}$ ) = 1.
80  BEHREND 1986B assumed that a charge 2/3 spinless leptoquark, ${{\mathit \chi}}$, decays either into ${\mathit {\mathit s}}$ ${{\mathit \mu}^{+}}$ or ${\mathit {\mathit c}}$ ${{\overline{\mathit \nu}}}$ : B( ${{\mathit \chi}}$ $\rightarrow$ ${\mathit {\mathit s}}$ ${{\mathit \mu}^{+}}$ ) $+$ B( ${{\mathit \chi}}$ $\rightarrow$ ${\mathit {\mathit c}}$ ${{\overline{\mathit \nu}}}$ ) = 1.
  References:
SIRUNYAN 2020A
EPJ C80 3 Searches for physics beyond the standard model with the $M_\mathrm{T2}$ variable in hadronic final states with and without disappearing tracks in proton-proton collisions at $\sqrt{s}=$ 13 TeV
AABOUD 2019AX
EPJ C79 733 Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV with the ATLAS experiment
AABOUD 2019X
JHEP 1906 144 Searches for third-generation scalar leptoquarks in $\sqrt{s}$ = 13 TeV pp collisions with the ATLAS detector
SIRUNYAN 2019BC
PL B795 76 Search for dark matter in events with a leptoquark and missing transverse momentum in proton-proton collisions at 13 TeV
SIRUNYAN 2019BI
PR D99 032014 Search for pair production of second-generation leptoquarks at $\sqrt{s}=$ 13 TeV
SIRUNYAN 2019Y
JHEP 1903 170 Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two $\tau$ leptons and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2019BJ
PR D99 052002 Search for pair production of first-generation scalar leptoquarks at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2018U
PR D98 032005 Constraints on models of scalar and vector leptoquarks decaying to a quark and a neutrino at $\sqrt{s}=$ 13 TeV
SIRUNYAN 2018EC
PRL 121 241802 Search for leptoquarks coupled to third-generation quarks in proton-proton collisions at $\sqrt{s}=$ 13 TeV
SIRUNYAN 2018CZ
EPJ C78 707 Search for third-generation scalar leptoquarks decaying to a top quark and a $\tau$ lepton at $\sqrt{s}=$ 13 TeV
KHACHATRYAN 2017J
JHEP 1703 077 Search for Heavy Neutrinos or Third-Generation Leptoquarks in Final States with Two Hadronically Decaying ${{\mathit \tau}}$ Leptons and Two Jets in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
SIRUNYAN 2017H
JHEP 1707 121 Search for Third-Generation Scalar Leptoquarks and Heavy Right-Handed Neutrinos in Final States with Two Tau Leptons and Two Jets in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
AAD 2016G
EPJ C76 5 Searches for Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2016AF
PR D93 032004 Search for Pair Production of First and Second Generation Leptoquarks in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2015AJ
JHEP 1507 042 Search for Third-Generation Scalar Leptoquarks in the ${\mathit {\mathit t}}{{\mathit \tau}}$ Channel in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2014T
PL B739 229 Search for Pair Production of Third-Generation Scalar Leptoquarks and Top squarks in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
AAD 2013AE
JHEP 1306 033 Search for Third Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
CHATRCHYAN 2013M
PRL 110 081801 Search for Pair Production of Third-Generation Leptoquarks and Top Squarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
AAD 2012O
EPJ C72 2151 Search for Second Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
AAD 2012H
PL B709 158 Search for First Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
CHATRCHYAN 2012AG
PR D86 052013 Search for Pair Production of First- and Second-Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
CHATRCHYAN 2012BO
JHEP 1212 055 Search for Third-Generation Leptoquarks and Scalar Bottom Quarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
AAD 2011D
PR D83 112006 Search for Pair Production of First or Second Generation Leptoquarks in Proton$−$Proton Collisions at $\sqrt {s }$ = 7 TeV using the ATLAS Detector at the LHC
ABAZOV 2011V
PR D84 071104 Search for First Generation Leptoquark Pair Production in the Electron + Missing Energy + Jets Final State
CHATRCHYAN 2011N
PL B703 246 Search for First Generation Scalar Leptoquarks in the ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ Channel in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
KHACHATRYAN 2011D
PRL 106 201802 Search for Pair Production of First-Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
KHACHATRYAN 2011E
PRL 106 201803 Search for Pair Production of Second-Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
ABAZOV 2010L
PL B693 95 Search for Scalar Bottom Quarks and Third-Generation Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2009
PL B671 224 Search for Pair Production os Second Generation Scalar Leptoquarks
ABAZOV 2009AF
PL B681 224 Search for Pair Production of First-Generation Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96$~$TeV
AALTONEN 2008P
PR D77 091105 Search for Third Generation Vector Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
AALTONEN 2008Z
PRL 101 071802 Search for Pair Production of Scalar Top Quarks Decaying to a ${{\mathit \tau}}$ Lepton and a ${\mathit {\mathit b}}$ Quark in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2008AD
PL B668 357 Search for Scalar Leptoquarks and T-odd Quarks in the Acoplanar Jet Topology using 2.5 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ Collision Data at $\sqrt {s }$ = 1.96$~$TeV
ABAZOV 2008AN
PRL 101 241802 Search for Third Generation Scalar Leptoquarks Decaying into ${{\mathit \tau}}{{\mathit b}}$
ABAZOV 2007J
PRL 99 061801 Search for Third-Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2006L
PL B640 230 Search for Scalar Leptoquarks in the Acoplanar Jet Topology in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2006A
PL B636 183 Search for Pair Production of Second Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABULENCIA 2006T
PR D73 051102 Search for Second-Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2005H
PR D71 071104 Search for First-Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ACOSTA 2005P
PR D72 051107 Search for First-Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ACOSTA 2005I
PR D71 112001 Search for Scalar Leptoquark Pairs Decaying to ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABBIENDI 2003R
EPJ C31 281 Search for Pair Produced Leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Interactions at $\sqrt {s }$ $\approx{}$ 189 to 209 GeV
ABAZOV 2002
PRL 88 191801 Search for Leptoquark Pairs Decaying to ${{\mathit \nu}}{{\mathit \nu}}{+}$ jets in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABAZOV 2001D
PR D64 092004 Search for First Generation Scalar and Vector Leptoquarks
ABBIENDI 2000M
EPJ C13 15 Search for Pair-Produced Leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Interactions at $\sqrt {s }$ $\approx{}$ 183 GeV
ABBOTT 2000C
PRL 84 2088 Search for Second Generation Leptoquark Pairs in ${{\overline{\mathit p}}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
AFFOLDER 2000K
PRL 85 2056 Search for Second and Third Generation Leptoquarks Including Production via Technicolor Interactions in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABBOTT 1999J
PRL 83 2896 Search for Second Generation Leptoquark Pairs Decaying to ${{\mathit \nu}_{{\mu}}}$ + jets in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABBOTT 1998J
PRL 81 38 Search for Charge 1/3 Third Generation Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABBOTT 1998E
PRL 80 2051 Search for First Generation Scalar Leptoquark Pairs in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABE 1998S
PRL 81 4806 Search for Second Generation Leptoquarks in the Dimuon Plus Dijet Channel of ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
GROSS-PILCHER 1998
hep-ex/9810015 Combined Limits on first Generation Leptoquarks from the CDF and ${D0}$ Experiments
ABE 1997X
PRL 79 4327 Search for First Generation Leptoquark Pair Production in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABE 1997F
PRL 78 2906 Search for Third Generation Leptoquarks in ${{\overline{\mathit p}}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABREU 1993J
PL B316 620 Limits on the Production of Scalar Leptoquarks from ${{\mathit Z}^{0}}$ Decays at LEP
ADRIANI 1993M
PRPL 236 1 Results from the L3 Experiment at LEP
DECAMP 1992
PRPL 216 253 Searches for New Particles in ${{\mathit Z}}$ Decays using the ALEPH Detector
KIM 1990
PL B240 243 A Search for Leptoquark and Colored Lepton Pair Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Annihilations at TRISTAN
BARTEL 1987B
ZPHY C36 15 Search for Leptoquarks and other New Particles with Lepton Hadron Signature in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Interactions
BEHREND 1986B
PL B178 452 Search for Light Leptoquark Bosons