MASS LIMITS for Leptoquarks from Pair Production

INSPIRE   PDGID:
S056EGT
These limits rely only on the color or electroweak charge of the leptoquark.

VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$>1300$ 95 1
AAD
2023BJ
ATLS Scalar LQ. B(${{\mathit c}}{{\mathit \tau}}$) = 1
$\bf{> 1460}$ 95 2
AAD
2023CF
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>1910$ 95 3
AAD
2023CF
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1, B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>1460$ 95 4
AAD
2023F
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}})=B({{\mathit b}}{{\mathit \mu}}$)=0.5
$>1440$ 95 5
AAD
2023F
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}})=B({{\mathit b}}{{\mathit e}}$)=0.5
$>1370$ 95 6
AAD
2023F
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \mu}})=B({{\mathit b}}{{\mathit \nu}}$)=0.5
$>1390$ 95 7
AAD
2023F
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit e}})=B({{\mathit b}}{{\mathit \nu}}$)=0.5
$>1980$ 95 8
AAD
2023F
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1, B(${{\mathit t}}{{\mathit \nu}}$) = B(${{\mathit b}}{{\mathit \mu}}$) = 0.5
$>1900$ 95 9
AAD
2023F
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1, B(${{\mathit t}}{{\mathit \nu}}$) = B(${{\mathit b}}{{\mathit e}}$) = 0.5
$> 1340$ 95 10
TUMASYAN
2022H
CMS Scalar LQ. B(${{\mathit t}}{{\mathit e}}$) = 1
$> 1420$ 95 11
TUMASYAN
2022H
CMS Scalar LQ. B(${{\mathit t}}{{\mathit \mu}}$) = 1
$> 1120$ 95 12
TUMASYAN
2022H
CMS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$> 1480$ 95 13
AAD
2021AG
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit e}}$) = 1
$> 1470$ 95 14
AAD
2021AG
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \mu}}$) = 1
$> 1190$ 95 15
AAD
2021AW
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$> 1030$ 95 16
AAD
2021AW
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$> 1760$ 95 17
AAD
2021AW
ATLS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$> 1260$ 95 18
AAD
2021S
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \nu}}$) = 1
$> 1430$ 95 19
AAD
2021T
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$> 950$ 95 20
SIRUNYAN
2021J
CMS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}})=B({{\mathit b}}{{\mathit \nu}}$)=0.5
$> 1650$ 95 21
SIRUNYAN
2021J
CMS Vector LQ. ${{\mathit \kappa}}$=1, B(${{\mathit t}}{{\mathit \nu}}$) = B(${{\mathit b}}{{\mathit \tau}}$) = 0.5
$\bf{> 1800}$ 95 22
AAD
2020AK
ATLS Scalar LQ. B(${{\mathit e}}{{\mathit q}}$) = 1
$\bf{> 1700}$ 95 23
AAD
2020AK
ATLS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}}$) = 1
$> 1240$ 95 24
AAD
2020S
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}}$) = 1
$> 1185$ 95 25
SIRUNYAN
2020A
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit b}}$) = 1
$> 1140$ 95 26
SIRUNYAN
2020A
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit t}}$) = 1
$> 1140$ 95 27
SIRUNYAN
2020A
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit q}}$) = 1 with ${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$
$> 1925$ 95 28
SIRUNYAN
2020A
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit \nu}}{{\mathit b}}$) = 1
$> 1825$ 95 29
SIRUNYAN
2020A
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit \nu}}{{\mathit t}}$) = 1
$> 1980$ 95 30
SIRUNYAN
2020A
CMS Vector LQ. ${{\mathit \kappa}}$ = 1. B(${{\mathit \nu}}{{\mathit q}}$) = 1 with ${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$
$> 1400$ 95 31
AABOUD
2019AX
ATLS Scalar LQ. B(${{\mathit e}}{{\mathit q}}$) = 1
$> 1560$ 95 32
AABOUD
2019AX
ATLS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}}$) = 1
$>1000$ 95 33
AABOUD
2019X
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \nu}}$) = 1
$>1030$ 95 34
AABOUD
2019X
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \tau}}$) = 1
$>970$ 95 35
AABOUD
2019X
ATLS Scalar LQ. B(${{\mathit b}}{{\mathit \nu}}$) = 1
$>920$ 95 36
AABOUD
2019X
ATLS Scalar LQ. B(${{\mathit t}}{{\mathit \tau}}$) = 1
$> 1530$ 95 37
SIRUNYAN
2019BI
CMS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}})+B({{\mathit \nu}}{{\mathit q}}$) = 1
$> 1435$ 95 38
SIRUNYAN
2019BJ
CMS Scalar LQ. B(${{\mathit e}}{{\mathit q}})+B({{\mathit \nu}}{{\mathit q}}$) = 1
$> 1020$ 95 39
SIRUNYAN
2019Y
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit b}}$) = 1
$\text{none 300 - 900}$ 95 40
SIRUNYAN
2018CZ
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit t}}$) = 1
$> 1420$ 95 41
SIRUNYAN
2018EC
CMS Scalar LQ. B(${{\mathit \mu}}{{\mathit t}}$) = 1
$> 1190$ 95 42
SIRUNYAN
2018EC
CMS Vector LQ. ${{\mathit \mu}}{{\mathit t}}$, ${{\mathit \tau}}{{\mathit t}}$, ${{\mathit \nu}}{{\mathit b}}$
$> 1100$ 95 43
SIRUNYAN
2018U
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit b}}$) = 1
$> 980$ 95 44
SIRUNYAN
2018U
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit q}}$) = 1 with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$
$> 1020$ 95 45
SIRUNYAN
2018U
CMS Scalar LQ. B(${{\mathit \nu}}{{\mathit t}}$) = 1
$>1810$ 95 46
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit b}}{{\mathit \nu}}$
$>1790$ 95 47
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit q}}{{\mathit \nu}}$ with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$
$>1780$ 95 48
SIRUNYAN
2018U
CMS Vector LQ. $\kappa $=1. LQ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$
$>740$ 95 49
KHACHATRYAN
2017J
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit b}}$) = 1
$> 850$ 95 50
SIRUNYAN
2017H
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit b}}$) = 1
$> 1050$ 95 51
AAD
2016G
ATLS Scalar LQ. B(${{\mathit e}}{{\mathit q}}$) = 1
$> 1000$ 95 52
AAD
2016G
ATLS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}}$) = 1
$> 625$ 95 53
AAD
2016G
ATLS Scalar LQ. B(${{\mathit \nu}}{{\mathit b}}$) = 1
$\text{none 200 - 640}$ 95 54
AAD
2016G
ATLS Scalar LQ. B(${{\mathit \nu}}{{\mathit t}}$) = 1
$> 1010$ 95 55
KHACHATRYAN
2016AF
CMS Scalar LQ. B(${{\mathit e}}{{\mathit q}}$) = 1
$> 1080$ 95 56
KHACHATRYAN
2016AF
CMS Scalar LQ. B(${{\mathit \mu}}{{\mathit q}}$) = 1
$> 685$ 95 57
KHACHATRYAN
2015AJ
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit t}}$) = 1
$> 740$ 95 58
KHACHATRYAN
2014T
CMS Scalar LQ. B(${{\mathit \tau}}{{\mathit b}}$) = 1
• • We do not use the following data for averages, fits, limits, etc. • •
59
SIRUNYAN
2019BC
CMS Scalar LQ ($\rightarrow$ ${{\mathit \mu}}{{\mathit q}}$) LQ ($\rightarrow$ ${{\mathit X}}$ + DM)
$> 534$ 95 60
AAD
2013AE
ATLS Third generation
$> 525$ 95 61
CHATRCHYAN
2013M
CMS Third generation
$> 660$ 95 62
AAD
2012H
ATLS First generation
$> 685$ 95 63
AAD
2012O
ATLS Second generation
$> 830$ 95 64
CHATRCHYAN
2012AG
CMS First generation
$> 840$ 95 65
CHATRCHYAN
2012AG
CMS Second generation
$> 450$ 95 66
CHATRCHYAN
2012BO
CMS Third generation
$> 376$ 95 67
AAD
2011D
ATLS Superseded by AAD 2012H
$> 422$ 95 68
AAD
2011D
ATLS Superseded by AAD 2012O
$> 326$ 95 69
ABAZOV
2011V
D0 First generation
$> 339$ 95 70
CHATRCHYAN
2011N
CMS Superseded by CHATRCHYAN 2012AG
$> 384$ 95 71
KHACHATRYAN
2011D
CMS Superseded by CHATRCHYAN 2012AG
$> 394$ 95 72
KHACHATRYAN
2011E
CMS Superseded by CHATRCHYAN 2012AG
$> 247$ 95 73
ABAZOV
2010L
D0 Third generation
$> 316$ 95 74
ABAZOV
2009
D0 Second generation
$> 299$ 95 75
ABAZOV
2009AF
D0 Superseded by ABAZOV 2011V
76
AALTONEN
2008P
CDF Third generation
$> 153$ 95 77
AALTONEN
2008Z
CDF Third generation
$> 205$ 95 78
ABAZOV
2008AD
D0 All generations
$> 210$ 95 77
ABAZOV
2008AN
D0 Third generation
$> 229$ 95 79
ABAZOV
2007J
D0 Superseded by ABAZOV 2010L
$> 251$ 95 80
ABAZOV
2006A
D0 Superseded by ABAZOV 2009
$> 136$ 95 81
ABAZOV
2006L
D0 Superseded by ABAZOV 2008AD
$> 226$ 95 82
ABULENCIA
2006T
CDF Second generation
$> 256$ 95 83
ABAZOV
2005H
D0 First generation
$>117$ 95 78
ACOSTA
2005I
CDF First generation
$> 236$ 95 84
ACOSTA
2005P
CDF First generation
$>99$ 95 85
ABBIENDI
2003R
OPAL First generation
$>100$ 95 85
ABBIENDI
2003R
OPAL Second generation
$>98$ 95 85
ABBIENDI
2003R
OPAL Third generation
$>98$ 95 86
ABAZOV
2002
D0 All generations
$>225$ 95 87
ABAZOV
2001D
D0 First generation
$>85.8$ 95 88
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>85.5$ 95 88
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>82.7$ 95 88
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>200$ 95 89
ABBOTT
2000C
D0 Second generation
$>123$ 95 90
AFFOLDER
2000K
CDF Second generation
$> 148$ 95 91
AFFOLDER
2000K
CDF Third generation
$>160$ 95 92
ABBOTT
1999J
D0 Second generation
$>225$ 95 93
ABBOTT
1998E
D0 First generation
$>94$ 95 94
ABBOTT
1998J
D0 Third generation
$> 202$ 95 95
ABE
1998S
CDF Second generation
$>242$ 95 96
GROSS-PILCHER
1998
First generation
$>99$ 95 97
ABE
1997F
CDF Third generation
$>213$ 95 98
ABE
1997X
CDF First generation
$>45.5$ 95 99, 100
ABREU
1993J
DLPH First + second generation
$>44.4$ 95 101
ADRIANI
1993M
L3 First generation
$>44.5$ 95 101
ADRIANI
1993M
L3 Second generation
$>45$ 95 101
DECAMP
1992
ALEP Third generation
$\text{none 8.9 - 22.6}$ 95 102
KIM
1990
AMY First generation
$\text{none 10.2 - 23.2}$ 95 102
KIM
1990
AMY Second generation
$\text{none 5 - 20.8}$ 95 103
BARTEL
1987B
JADE
$\text{none 7 - 20.5}$ 95 104
BEHREND
1986B
CELL
1  AAD 2023BJ search for scalar leptoquarks decaying to ${{\mathit c}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for exclusion limit on $\sigma $ as function of ${{\mathit M}_{{{LQ}}}}$.
2  AAD 2023CF search for scalar and vector leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$. The limit quoted above is for scalar leptoquark. See their Fig. 9 for limits on leptoquark pair production cross sections.
3  AAD 2023CF search for scalar and vector leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$. The limit quoted above is for vector leptoquark with ${{\mathit \kappa}}$ = 1. The limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1650 for vector leptoquark with ${{\mathit \kappa}}$ = 0. See their Fig. 9 for limits on leptoquark pair production cross sections.
4  AAD 2023F search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit \mu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion contour in B(${{\mathit b}}{{\mathit \mu}})−{{\mathit M}_{{{LQ}}}}$ plane.
5  AAD 2023F search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit e}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion contour in B(${{\mathit b}}{{\mathit e}})−{{\mathit M}_{{{LQ}}}}$ plane.
6  AAD 2023F search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$ and ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion contour in B(${{\mathit t}}{{\mathit \mu}})−{{\mathit M}_{{{LQ}}}}$ plane.
7  AAD 2023F search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$ and ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for exclusion contour in B(${{\mathit t}}{{\mathit e}})−{{\mathit M}_{{{LQ}}}}$ plane.
8  AAD 2023F search for ${{\mathit \kappa}}$ = 1 (YM coupling) vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit \mu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. If ${{\mathit \kappa}}$ = 0 (minimal coupling) is assumed, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1710 GeV. See their Fig. 10 for exclusion contour in B(${{\mathit b}}{{\mathit \mu}})−{{\mathit M}_{{{LQ}}}}$ plane.
9  AAD 2023F search for ${{\mathit \kappa}}$ = 1 (YM coupling) vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit e}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. If ${{\mathit \kappa}}$ = 0 (minimal coupling) is assumed, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1620 GeV. See their Fig. 10 for exclusion contour in B(${{\mathit b}}{{\mathit e}})−{{\mathit M}_{{{LQ}}}}$ plane.
10  TUMASYAN 2022H search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of ${{\mathit M}_{{{LQ}}}}$.
11  TUMASYAN 2022H search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of ${{\mathit M}_{{{LQ}}}}$.
12  TUMASYAN 2022H search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of ${{\mathit M}_{{{LQ}}}}$.
13  AAD 2021AG search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit e}}$. See their Fig. 6 for exclusion limit on B(${{\mathit t}}{{\mathit e}}$) as function of ${{\mathit M}_{{{LQ}}}}$.
14  AAD 2021AG search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \mu}}$. See their Fig. 6 for exclusion limit on B(${{\mathit t}}{{\mathit \mu}}$) as function of ${{\mathit M}_{{{LQ}}}}$.
15  AAD 2021AW search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$. See their Fig. 9 for exclusion contour in B(${{\mathit b}}{{\mathit \tau}})−{{\mathit M}_{{{LQ}}}}$ plane.
16  AAD 2021AW search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$. See their Fig. 9 for exclusion contour in B(${{\mathit t}}{{\mathit \tau}})−{{\mathit M}_{{{LQ}}}}$ plane.
17  AAD 2021AW search for ${{\mathit \kappa}}$ = 1 vector leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$. See their Fig. 10 for exclusion contour in B(${{\mathit b}}{{\mathit \tau}})−{{\mathit M}_{{{LQ}}}}$ plane and for limit on ${{\mathit \kappa}}$ = 0 vector leptoquarks.
18  AAD 2021S search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit b}}{{\mathit \nu}}$) = 1. For B(${{\mathit b}}{{\mathit \nu}}$) = 0.05, the limit becomes 400 GeV.
19  AAD 2021T search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit t}}{{\mathit \tau}}$) = 1. For B(${{\mathit t}}{{\mathit \tau}}$) = 0.5, the limit becomes 1220 GeV. See their Fig. 15b for limits on B(${{\mathit t}}{{\mathit \tau}}$) as a function of leptoquark mass.
20  SIRUNYAN 2021J search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$ and ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
21  SIRUNYAN 2021J search for vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ and ${{\mathit b}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above assumes ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1290 GeV.
22  AAD 2020AK search for scalar leptoquarks decaying to ${{\mathit e}}{{\mathit q}}$, ${{\mathit e}}{{\mathit b}}$, ${{\mathit e}}{{\mathit c}}$, ${{\mathit \mu}}{{\mathit q}}$, ${{\mathit \mu}}{{\mathit b}}$, ${{\mathit \mu}}{{\mathit c}}$. The quoted limit assumes B(${{\mathit e}}{{\mathit q}}$) = 1. See their Fig. 9 for limits on B(${{\mathit e}}{{\mathit q}}$), B(${{\mathit e}}{{\mathit b}}$), B(${{\mathit e}}{{\mathit c}}$), B(${{\mathit \mu}}{{\mathit q}}$), B(${{\mathit \mu}}{{\mathit b}}$), B(${{\mathit \mu}}{{\mathit c}}$) as a function of leptoquark mass.
23  AAD 2020AK search for scalar leptoquarks decaying to ${{\mathit e}}{{\mathit q}}$, ${{\mathit e}}{{\mathit b}}$, ${{\mathit e}}{{\mathit c}}$, ${{\mathit \mu}}{{\mathit q}}$, ${{\mathit \mu}}{{\mathit b}}$, ${{\mathit \mu}}{{\mathit c}}$. The quoted limit assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. See their Fig. 9 for limits on B(${{\mathit e}}{{\mathit q}}$), B(${{\mathit e}}{{\mathit b}}$), B(${{\mathit e}}{{\mathit c}}$), B(${{\mathit \mu}}{{\mathit q}}$), B(${{\mathit \mu}}{{\mathit b}}$), B(${{\mathit \mu}}{{\mathit c}}$) as a function of leptoquark mass.
24  AAD 2020S search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
25  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B(${{\mathit \nu}}{{\mathit b}}$) = 1.
26  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B(${{\mathit \nu}}{{\mathit t}}$) = 1.
27  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes scalar leptoquark with B(${{\mathit \nu}}{{\mathit q}}$) = 1.
28  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B(${{\mathit \nu}}{{\mathit b}}$) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1560 GeV.
29  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B(${{\mathit \nu}}{{\mathit t}}$) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1475 GeV.
30  SIRUNYAN 2020A search for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$ (${{\mathit q}}$ = ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$). The limit quoted above assumes vector leptoquark with B(${{\mathit \nu}}{{\mathit q}}$) = 1 and ${{\mathit \kappa}}$ = 1. If we assume ${{\mathit \kappa}}$ = 0, the limit becomes ${{\mathit M}_{{{LQ}}}}$ $>$ 1560 GeV.
31  AABOUD 2019AX search for leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1.
32  AABOUD 2019AX search for leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1.
33  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
34  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
35  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
36  AABOUD 2019X search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
37  SIRUNYAN 2019BI search for a pair of scalar leptoquarks decaying to ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and to ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Limits are shown as a function of ${{\mathit \beta}}$ where ${{\mathit \beta}}$ is the branching fraction to a muon and a quark. For ${{\mathit \beta}}$ = 1.0 (0.5) LQ masses up to 1530 (1285) GeV are excluded. See Fig. 9 for exclusion limits in the plane of ${{\mathit \beta}}$ and LQ mass.
38  SIRUNYAN 2019BJ search for a pair of scalar leptoquarks decaying to ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Limits are shown as a function of the branching fraction $\beta $ to an electron and a quark. For $\beta $ = 1.0 (0.5) LQ masses up to 1435 (1270) GeV are excluded. See Fig. 9 for exclusion limits in the plane of $\beta $ and LQ mass.
39  SIRUNYAN 2019Y search for a pair of third generation scalar leptoquarks, each decaying to ${{\mathit \tau}}$ and a jet. Assuming B(${{\mathit \tau}}{{\mathit b}}$) = 1, leptoquark masses below 1.02 TeV are excluded.
40  SIRUNYAN 2018CZ search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit t}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit t}}$) = 1.
41  SIRUNYAN 2018EC set limits for scalar and vector leptoquarks decaying to ${{\mathit \mu}}{{\mathit t}}$, ${{\mathit \tau}}{{\mathit t}}$, and ${{\mathit \nu}}{{\mathit b}}$. The limit quoted above assumes scalar leptoquark with B(${{\mathit \mu}}{{\mathit t}}$) = 1.
42  SIRUNYAN 2018EC set limits for scalar and vector leptoquarks decaying to ${{\mathit \mu}}{{\mathit t}}$, ${{\mathit \tau}}{{\mathit t}}$, and ${{\mathit \nu}}{{\mathit b}}$. The limit quoted above assumes vector leptoquark with all possible combinations of branching fractions to ${{\mathit \mu}}{{\mathit t}}$, ${{\mathit \tau}}{{\mathit t}}$, and ${{\mathit \nu}}{{\mathit b}}$.
43  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. The limit quoted above assumes scalar leptoquark with B(${{\mathit b}}{{\mathit \nu}}$) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1810 GeV.
44  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. The limit quoted above assumes scalar leptoquark with B(${{\mathit q}}{{\mathit \nu}}$) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1790 GeV.
45  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. The limit quoted above assumes scalar leptoquark with B(${{\mathit \nu}}{{\mathit t}}$) = 1. Vector leptoquarks with ${{\mathit \kappa}}$ = 1 are excluded below masses of 1780 GeV.
46  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit b}}{{\mathit \nu}}$ are assumed.
47  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit q}}{{\mathit \nu}}$ with ${\mathit {\mathit q}}$ = ${\mathit {\mathit u}},{\mathit {\mathit d}},{\mathit {\mathit s}},{\mathit {\mathit c}}$ are assumed.
48  SIRUNYAN 2018U set limits for scalar and vector leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$, ${{\mathit b}}{{\mathit \nu}}$, and ${{\mathit q}}{{\mathit \nu}}$. ${{\mathit \kappa}}$ = 1 and LQ $\rightarrow$ ${{\mathit t}}{{\mathit \nu}}$ are assumed.
49  KHACHATRYAN 2017J search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1.
50  SIRUNYAN 2017H search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1.
51  AAD 2016G search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B({{\mathit e}}{{\mathit q}}$) = 1.
52  AAD 2016G search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B({{\mathit \mu}}{{\mathit q}}$) = 1.
53  AAD 2016G search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$. The limit above assumes $\mathit B({{\mathit b}}{{\mathit \nu}}$) = 1.
54  AAD 2016G search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$. The limit above assumes $\mathit B({{\mathit t}}{{\mathit \nu}}$) = 1.
55  KHACHATRYAN 2016AF search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$)= 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5, the limit becomes 850 GeV.
56  KHACHATRYAN 2016AF search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 760 GeV.
57  KHACHATRYAN 2015AJ search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit t}}{{\mathit t}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B({{\mathit \tau}}{{\mathit t}}$) = 1.
58  KHACHATRYAN 2014T search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1. See their Fig. 5 for the exclusion limit as function of B(${{\mathit \tau}}{{\mathit b}}$).
59  SIRUNYAN 2019BC search for scalar leptoquark (LQ) pair production in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. One LQ is assumed to decay to ${{\mathit \mu}}{{\mathit q}}$, while the other decays to dark matter pair and SM particles. See their Fig. 4 for limits in $\mathit M_{{\mathrm {LQ}}}−\mathit M_{{\mathrm {DM}}}$ plane.
60  AAD 2013AE search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7$~$TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1.
61  CHATRCHYAN 2013M search for scalar and vector leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above is for scalar leptoquarks with B(${{\mathit \tau}}{{\mathit b}}$) = 1.
62  AAD 2012H search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}$ ${{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5, the limit becomes 607 GeV.
63  AAD 2012O search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 594 GeV.
64  CHATRCHYAN 2012AG search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5, the limit becomes 640 GeV.
65  CHATRCHYAN 2012AG search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 650 GeV.
66  CHATRCHYAN 2012BO search for scalar leptoquarks decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit b}}$) = 1.
67  AAD 2011D search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV.The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5, the limit becomes 319 GeV.
68  AAD 2011D search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 362 GeV.
69  ABAZOV 2011V search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 0.5.
70  CHATRCHYAN 2011N search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 0.5.
71  KHACHATRYAN 2011D search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1.
72  KHACHATRYAN 2011E search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1.
73  ABAZOV 2010L search for pair productions of scalar leptoquark state decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit b}}$) = 1.
74  ABAZOV 2009 search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 270 GeV.
75  ABAZOV 2009AF search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5 the bound becomes 284 GeV.
76  AALTONEN 2008P search for vector leptoquarks using ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Assuming Yang-Mills (minimal) couplings, the mass limit is $>$317 GeV (251 GeV) at 95$\%$ CL for B(${{\mathit \tau}}{{\mathit b}}$) = 1.
77  Search for pair production of scalar leptoquark state decaying to ${{\mathit \tau}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= 1.96 TeV. The limit above assumes B(${{\mathit \tau}}{{\mathit b}}$) = 1.
78  Search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit q}}$) = 1.
79  ABAZOV 2007J search for pair productions of scalar leptoquark state decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit b}}$) = 1.
80  ABAZOV 2006A search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8 TeV and 1.96 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5, the limit becomes 204 GeV.
81  ABAZOV 2006L search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8$~$TeV and at 1.96$~$TeV. The limit above assumes B(${{\mathit \nu}}{{\mathit q}}$) = 1.
82  ABULENCIA 2006T search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96$~$TeV. The quoted limit assumes B(${{\mathit \mu}}{{\mathit q}}$) = 1. For B(${{\mathit \mu}}{{\mathit q}}$) = 0.5 or 0.1, the bound becomes 208$~$GeV or 143$~$GeV, respectively. See their Fig.$~$4 for the exclusion limit as a function of B(${{\mathit \mu}}{{\mathit q}}$).
83  ABAZOV 2005H search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8 TeV and 1.96 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5 the bound becomes 234 GeV.
84  ACOSTA 2005P search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$, ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$) = 1. For B(${{\mathit e}}{{\mathit q}}$) = 0.5 and 0.1, the bound becomes 205 GeV and 145 GeV, respectively.
85  ABBIENDI 2003R search for scalar/vector leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = $189 - 209$ GeV. The quoted limits are for charge $−$4/3 isospin 0 scalar-leptoquark with B(${{\mathit \ell}}{{\mathit q}}$) = 1. See their table 12 for other cases.
86  ABAZOV 2002 search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The bound holds for all leptoquark generations. Vector leptoquarks are likewise constrained to lie above 200 GeV.
87  ABAZOV 2001D search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$)=1. For B(${{\mathit e}}{{\mathit q}})=0.5$ and 0, the bound becomes 204 and 79$~$GeV, respectively. Bounds for vector leptoquarks are also given. Supersedes ABBOTT 1998E.
88  ABBIENDI 2000M search for scalar/vector leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }$=183 GeV. The quoted limits are for charge $-4$/3 isospin$~$0 scalar-leptoquarks with B(${{\mathit \ell}}{{\mathit q}}$)=1. See their Table$~$8 and Figs.$~6 - 9$ for other cases.
89  ABBOTT 2000C search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The limit above assumes B(${{\mathit \mu}}{{\mathit q}}$)=1. For B(${{\mathit \mu}}{{\mathit q}}$)=0.5 and 0, the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also given.
90  AFFOLDER 2000K search for scalar leptoquark using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit c}}{{\mathit c}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The quoted limit assumes B(${{\mathit \nu}}{{\mathit c}}$)=1. Bounds for vector leptoquarks are also given.
91  AFFOLDER 2000K search for scalar leptoquark using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The quoted limit assumes B(${{\mathit \nu}}{{\mathit b}}$)=1. Bounds for vector leptoquarks are also given.
92  ABBOTT 1999J search for leptoquarks using ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8$TeV. The quoted limit is for a scalar leptoquark with B(${{\mathit \mu}}{{\mathit q}}$) = B(${{\mathit \nu}}{{\mathit q}}$) = $0.5$. Limits on vector leptoquarks range from 240 to 290 GeV.
93  ABBOTT 1998E search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$, ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV. The limit above assumes B(${{\mathit e}}{{\mathit q}}$)=1. For B(${{\mathit e}}{{\mathit q}})=0.5$ and 0, the bound becomes 204 and 79 GeV, respectively.
94  ABBOTT 1998J search for charge $−$1/3 third generation scalar and vector leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8$ TeV. The quoted limit is for scalar leptoquark with B(${{\mathit \nu}}{{\mathit b}}$)=1.
95  ABE 1998S search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8~$TeV. The limit is for B(${{\mathit \mu}}{{\mathit q}}$)= 1. For B(${{\mathit \mu}}{{\mathit q}})=B({{\mathit \nu}}{{\mathit q}})=0.5$, the limit is $>160$ GeV.
96  GROSS-PILCHER 1998 is the combined limit of the CDF and ${D0}$ Collaborations as determined by a joint CDF/${D0}$ working group and reported in this FNAL Technical Memo. Original data published in ABE 1997X and ABBOTT 1998E.
97  ABE 1997F search for third generation scalar and vector leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = $1.8$ TeV. The quoted limit is for scalar leptoquark with B(${{\mathit \tau}}{{\mathit b}}$) = 1.
98  ABE 1997X search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV. The limit is for B(${{\mathit e}}{{\mathit q}}$)=1.
99  Limit is for charge $−$1/3 isospin-0 leptoquark with B(${{\mathit \ell}}{{\mathit q}}$) = 2/3.
100  First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.
101  Limits are for charge $−$1/3, isospin-0 scalar leptoquarks decaying to ${{\mathit \ell}^{-}}{{\mathit q}}$ or ${{\mathit \nu}}{{\mathit q}}$ with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
102  KIM 1990 assume pair production of charge 2/3 scalar-leptoquark via photon exchange. The decay of the first (second) generation leptoquark is assumed to be any mixture of ${{\mathit d}}{{\mathit e}^{+}}$ and ${{\mathit u}}{{\overline{\mathit \nu}}}$ (${{\mathit s}}{{\mathit \mu}^{+}}$ and ${{\mathit c}}{{\overline{\mathit \nu}}}$). See paper for limits for specific branching ratios.
103  BARTEL 1987B limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint B( X $\rightarrow$ ${{\mathit c}}{{\overline{\mathit \nu}}_{{{\mu}}}}$) $+$ B( X $\rightarrow$ ${{\mathit s}}{{\mathit \mu}^{+}}$) = 1.
104  BEHREND 1986B assumed that a charge 2/3 spinless leptoquark, ${{\mathit \chi}}$, decays either into ${\mathit {\mathit s}}$ ${{\mathit \mu}^{+}}$ or ${\mathit {\mathit c}}$ ${{\overline{\mathit \nu}}}$: B( ${{\mathit \chi}}$ $\rightarrow$ ${\mathit {\mathit s}}$ ${{\mathit \mu}^{+}}$) $+$ B( ${{\mathit \chi}}$ $\rightarrow$ ${\mathit {\mathit c}}$ ${{\overline{\mathit \nu}}}$) = 1.
References