MASS LIMITS for ${{\mathit W}^{\,'}}$ (Heavy Charged Vector Boson Other Than ${{\mathit W}}$) in Hadron Collider Experiments

INSPIRE   PDGID:
S056W1C
Couplings of ${{\mathit W}^{\,'}}$ to quarks and leptons are taken to be identical with those of ${{\mathit W}}$. The following limits are obtained from ${{\mathit p}}{{\overline{\mathit p}}}$ or ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit W}^{\,'}}$ X with ${{\mathit W}^{\,'}}$ decaying to the mode indicated in the comments. New decay channels ($\mathit e.g.$, ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$) are assumed to be suppressed. The most recent preliminary results can be found in the “${{\mathit W}^{\,'}}$-boson searches” review above.
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{ > 6000}$ OUR LIMIT
$>2500$ 95 1
AAD
2023AH
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 500 - 4600}$ 95 2
AAD
2023CC
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$> 1200$ 95 3
AAD
2023L
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit X}}$
$\text{none 400 - 3300}$ 95 4
AAD
2023O
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$>4400$ 95 5
TUMASYAN
2023AP
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$>4000$ 95 6
TUMASYAN
2023AP
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$\text{none 600 - 4800}$ 95 7
TUMASYAN
2023AW
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
$> 5700$ 95 8
TUMASYAN
2022AC
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ , ${{\mathit \mu}}{{\mathit \nu}}$
$> 3900$ 95 9
TUMASYAN
2022D
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$> 4000$ 95 9
TUMASYAN
2022D
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$\text{none 1000 - 4000}$ 95 10
TUMASYAN
2022J
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 500 - 2000}$ 95 11
TUMASYAN
2022R
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 1000 - 3400}$ 95 12
SIRUNYAN
2021Y
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$> 3200$ 95 13
AAD
2020AJ
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$> 4300$ 95 14
AAD
2020AT
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 1100 - 4000}$ 95 15
AAD
2020T
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 1800 - 3600}$ 95 16
SIRUNYAN
2020AI
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 1200 - 3800}$ 95 17
SIRUNYAN
2020Q
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 500 - 3250}$ 95 18
AABOUD
2019E
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\bf{> 6000}$ 95 19
AAD
2019C
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ , ${{\mathit \mu}}{{\mathit \nu}}$
$\text{none 1300 - 3600}$ 95 20
AAD
2019D
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 400 - 4000}$ 95 21
SIRUNYAN
2019AY
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
$> 4300$ 95 22
SIRUNYAN
2019CP
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$, ${{\mathit W}}{{\mathit H}}$, ${{\mathit \ell}}{{\mathit \nu}}$
$> 2600$ 95 23
SIRUNYAN
2019I
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$\text{none 1000 - 3000}$ 95 24
AABOUD
2018AF
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 500 - 2820}$ 95 25
AABOUD
2018AI
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$\text{none 300 - 3000}$ 95 26
AABOUD
2018AK
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 800 - 3200}$ 95 27
AABOUD
2018AL
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$> 5100$ 95 28
AABOUD
2018BG
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ , ${{\mathit \mu}}{{\mathit \nu}}$
$\text{none 250 - 2460}$ 95 29
AABOUD
2018CH
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 1200 - 3300}$ 95 30
AABOUD
2018F
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 500 - 3700}$ 95 31
AABOUD
2018K
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
$\text{none 1000 - 3600}$ 95 32
SIRUNYAN
2018
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 1000 - 3050}$ 95 33
SIRUNYAN
2018AX
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 400 - 5200}$ 95 34
SIRUNYAN
2018AZ
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ , ${{\mathit \mu}}{{\mathit \nu}}$
$\text{none 1000 - 3400}$ 95 35
SIRUNYAN
2018BK
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 600 - 3300}$ 95 36
SIRUNYAN
2018BO
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 800 - 2330}$ 95 37
SIRUNYAN
2018DJ
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$> 2800$ 95 38
SIRUNYAN
2018ED
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$\text{none 1200 - 3200, 3300 - 3600}$ 95 39
SIRUNYAN
2018P
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$>3600$ 95 40
AABOUD
2017AK
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 1100 - 2500}$ 95 41
AABOUD
2017AO
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$> 2220$ 95 42
AABOUD
2017B
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$> 2300$ 95 43
KHACHATRYAN
2017J
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}_{{{\tau}}}}$ ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}{{\mathit j}}{{\mathit j}}$
$\text{none 600 - 2700}$ 95 44
KHACHATRYAN
2017W
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$> 4100$ 95 45
KHACHATRYAN
2017Z
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ , ${{\mathit \mu}}{{\mathit \nu}}$
$> 2200$ 95 46
SIRUNYAN
2017A
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$>2300$ 95 47
SIRUNYAN
2017AK
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$ , ${{\mathit W}}{{\mathit H}}$
$> 2900$ 95 48
SIRUNYAN
2017H
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit N}}$
$> 2600$ 95 49
SIRUNYAN
2017I
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$>2450$ 95 50
SIRUNYAN
2017R
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$\text{none 2780 - 3150}$ 95 50
SIRUNYAN
2017R
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$> 2600$ 95 51
AABOUD
2016AE
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$> 4070$ 95 52
AABOUD
2016V
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$, ${{\mathit \mu}}{{\mathit \nu}}$
$>1810$ 95 53
AAD
2016R
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$>2600$ 95 54
AAD
2016S
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$> 2150$ 95 55
KHACHATRYAN
2016AO
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 1000 - 1600}$ 95 56
KHACHATRYAN
2016AP
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$\text{none 800 - 1500}$ 95 57
KHACHATRYAN
2016BD
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \nu}}$
$\text{none 1500 - 2600}$ 95 58
KHACHATRYAN
2016K
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 500 - 1600}$ 95 59
KHACHATRYAN
2016L
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 300 - 2700}$ 95 60
KHACHATRYAN
2016O
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
$\text{none 400 - 1590}$ 95 61
AAD
2015AU
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 1500 - 1760}$ 95 62
AAD
2015AV
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 300 - 1490}$ 95 63
AAD
2015AZ
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 1300 - 1500}$ 95 64
AAD
2015CP
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 500 - 1920}$ 95 65
AAD
2015R
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 800 - 2450}$ 95 66
AAD
2015V
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$> 1470$ 95 67
KHACHATRYAN
2015C
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$>3710$ 95 68
KHACHATRYAN
2015T
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$, ${{\mathit \mu}}{{\mathit \nu}}$
$\text{none 1000 - 3010}$ 95 69
KHACHATRYAN
2014O
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \ell}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit j}}{{\mathit j}}$
• • We do not use the following data for averages, fits, limits, etc. • •
70
AAD
2023BF
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$
71
AAD
2023CG
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \ell}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit j}}{{\mathit j}}$
72
AAD
2023CK
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit X}}{{\mathit H}}$
73
AAD
2023U
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit \gamma}}$
74
TUMASYAN
2022
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit R}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}{{\mathit W}}$
75
TUMASYAN
2022AL
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit B}}$ , ${{\mathit b}}{{\mathit T}}$
76
TUMASYAN
2022B
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit \gamma}}$
77
TUMASYAN
2022I
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit R}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}{{\mathit W}}$
78
TUMASYAN
2022P
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \ell}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit j}}{{\mathit j}}$
79
AAD
2020AD
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit J}}{{\mathit J}}$
80
AAD
2020W
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$
81
AABOUD
2019B
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \ell}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit j}}{{\mathit j}}$
82
AABOUD
2019BB
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \ell}}$ $\rightarrow$ ${{\mathit j}}{{\mathit \ell}}{{\mathit \ell}}$
83
SIRUNYAN
2019V
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit B}}{{\mathit t}}$ , ${{\mathit T}}{{\mathit b}}$
84
AABOUD
2018AA
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit \gamma}}$
85
AABOUD
2018AD
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$
$> 4500$ 95 86
AABOUD
2018CJ
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$, ${{\mathit W}}{{\mathit H}}$, ${{\mathit \ell}}{{\mathit \nu}}$
$\text{none 900 - 4400}$ 95 87
SIRUNYAN
2018CV
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \ell}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit j}}{{\mathit j}}$
88
KHACHATRYAN
2017U
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
89
AAD
2015BB
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$
$\text{none 300 - 880}$ 95 90
AALTONEN
2015C
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 1200 - 1900 and 2000 - 2200}$ 95 91
KHACHATRYAN
2015V
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$>3240$ 95
AAD
2014AI
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$, ${{\mathit \mu}}{{\mathit \nu}}$
92
AAD
2014AT
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit \gamma}}$
$\text{none 200 - 1520}$ 95 93
AAD
2014S
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 1000 - 1700}$ 95 94
KHACHATRYAN
2014
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
95
KHACHATRYAN
2014A
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 500 - 950}$ 95 96
AAD
2013AO
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 1100 - 1680}$ 95
AAD
2013D
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 1000 - 1920}$ 95
CHATRCHYAN
2013A
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
97
CHATRCHYAN
2013AJ
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$> 2900$ 95 98
CHATRCHYAN
2013AQ
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$, ${{\mathit \mu}}{{\mathit \nu}}$
$\text{none 800 - 1510}$ 95 99
CHATRCHYAN
2013E
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 700 - 940}$ 95 100
CHATRCHYAN
2013U
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 700 - 1130}$ 95 101
AAD
2012AV
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 200 - 760}$ 95 102
AAD
2012BB
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
103
AAD
2012CK
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit q}}$
$> 2550$ 95 104
AAD
2012CR
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$, ${{\mathit \mu}}{{\mathit \nu}}$
105
AAD
2012M
ATLS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \ell}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit j}}{{\mathit j}}$
106
AALTONEN
2012N
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit q}}$
$\text{none 200 - 1143}$ 95 102
CHATRCHYAN
2012AF
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
107
CHATRCHYAN
2012AR
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit q}}$
108
CHATRCHYAN
2012BG
CMS ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit N}}{{\mathit \ell}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit j}}{{\mathit j}}$
$> 1120$ 95
AALTONEN
2011C
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$
$\text{none 180 - 690}$ 95 109
ABAZOV
2011H
D0 ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 600 - 863}$ 95 110
ABAZOV
2011L
D0 ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 285 - 516}$ 95 111
AALTONEN
2010N
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$\text{none 280 - 840}$ 95 112
AALTONEN
2009AC
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$> 1000$ 95
ABAZOV
2008C
D0 ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$
$\text{none 300 - 800}$ 95
ABAZOV
2004C
D0 ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 225 - 536}$ 95 113
ACOSTA
2003B
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$
$\text{none 200 - 480}$ 95 114
AFFOLDER
2002C
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$
$>786$ 95 115
AFFOLDER
2001I
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$, ${{\mathit \mu}}{{\mathit \nu}}$
$\text{none 300 - 420}$ 95 116
ABE
1997G
CDF ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$>720$ 95 117
ABACHI
1996C
D0 ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$
$>610$ 95 118
ABACHI
1995E
D0 ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$, ${{\mathit \tau}}{{\mathit \nu}}$
$\text{none 260 - 600}$ 95 119
RIZZO
1993
RVUE ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
1  AAD 2023AH search for resonances produced through Drell-Yan and vector-boson-fusion processes in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 7 and Fig. 8 for limits on $\sigma \cdot{}B$. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3 produced mainly via Drell-Yan.
2  AAD 2023CC search for resonances decaying to ${{\mathit t}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for right-handed ${{\mathit W}^{\,'}}$ assuming a ${{\mathit W}^{\,'}}$ coupling equal to the SM ${{\mathit W}}$ coupling. The limit becomes ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ $>$ 4200 GeV for left-handed ${{\mathit W}^{\,'}}$. See their Figs. 12 and 13 for limits on $\sigma \cdot{}B$.
3  AAD 2023L perform a generic search for resonances with events containing a ${{\mathit Z}}$ decaying into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Figs. 6, 7, 8 for model independent limits on $\sigma \cdot{}B$ for Gaussian-shaped resonances. The limit above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ decaying to ${{\mathit W}}{{\mathit Z}}$ with ${{\mathit g}_{{{V}}}}$ = 3 as well as with ${{\mathit g}_{{{V}}}}$ = 1.
4  AAD 2023O search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2950 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
5  TUMASYAN 2023AP search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ $>$ 4.8 TeV assuming ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ = ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ and combining ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$, ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$ channels.
6  TUMASYAN 2023AP search for resonances decaying to ${{\mathit W}}{{\mathit H}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ $>$ 4.8 TeV assuming ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ = ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ and combining ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$, ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$ channels.
7  TUMASYAN 2023AW search for SSM ${{\mathit W}^{\,'}}$ resonance decaying to ${{\mathit \tau}}{{\mathit \nu}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}}-{{\mathit W}^{\,'}}$ intereference and bosonic decays of ${{\mathit W}^{\,'}}$ are not included. See their Fig. 6 for limits on $\sigma \cdot{}B$.
8  TUMASYAN 2022AC search for ${{\mathit W}^{\,'}}$ with SM-like couplings in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The diboson decays of ${{\mathit W}^{\,'}}$ are assumed to be suppressed. See their Fig. 5 for limits on $\sigma \cdot{}B$.
9  TUMASYAN 2022D search for resonances produced through Drell-Yan and vector-boson-fusion processes in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limits on $\sigma \cdot{}B$. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3 produced mainly via Drell-Yan.
10  TUMASYAN 2022J search for resonances produced through Drell-Yan and vector-boson-fusion processes in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3, produced mainly via Drell-Yan. See their Fig. 9 for limits on $\sigma \cdot{}B$.
11  TUMASYAN 2022R search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ produced mainly via Drell-Yan. See their Fig. 8 for limits on $\sigma \cdot{}B$.
12  SIRUNYAN 2021Y search for resonances decaying to ${{\mathit t}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 2 for limits on ${{\mathit \sigma}}\cdot{}$ B( ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$).
13  AAD 2020AJ search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes M$_{{{\mathit W}^{\,'}}}$ $>$ 2900 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig. 6 for limits on $\sigma \cdot{}B$.
14  AAD 2020AT search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ $>$ 3900 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig. 13 for limits on $\sigma \cdot{}B$.
15  AAD 2020T search for ${{\mathit W}^{\,'}}$ with SM-like couplings in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 4(c) for limits on the product of the cross section, acceptance, and branching fraction.
16  SIRUNYAN 2020AI limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
17  SIRUNYAN 2020Q search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3.
18  AABOUD 2019E search for right-handed ${{\mathit W}^{\,'}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limit on on $\sigma \cdot{}\mathit B$.
19  AAD 2019C search for ${{\mathit W}^{\,'}}$ with SM-like couplings in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Bosonic decays and ${{\mathit W}}−{{\mathit W}^{\,'}}$ interference are neglected. The limits on ${{\mathit e}}$ and ${{\mathit \mu}}$ separately are 6.0 and 5.1 TeV respectively. See their Fig. 2 for limits on $\sigma \cdot{}B$.
20  AAD 2019D search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 3400 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 3800 GeV and $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 3500 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig. 9 for limits on $\sigma \cdot{}B$.
21  SIRUNYAN 2019AY limits shown for ${{\mathit W}^{\,'}}$ with SM-like coupling using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}}−{{\mathit W}^{\,'}}$ interference and bosonic decays of ${{\mathit W}^{\,'}}$ are not included. See their Fig. 5 for limits on $\sigma \cdot{}\mathit B$. Limits in the context of a nonuniversal gauge interaction are shown in Fig. 7. Model independent limits on ${{\mathit \sigma}}{{\mathit B}}{{\mathit A}}{{\mathit \epsilon}}$ can be seen in Fig. 8.
22  SIRUNYAN 2019CP present a statistical combinations of searches for ${{\mathit W}^{\,'}}$ decaying to pairs of bosons or leptons in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If we assume ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ = ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$, the limit becomes ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ $>$ 4500 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ $>$ 5000 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Figs. 2 and 3 for limits on $\sigma \cdot{}B$.
23  SIRUNYAN 2019I search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2800 GeV if we assume $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$.
24  AABOUD 2018AF give the limit above for right-handed ${{\mathit W}^{\,'}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. These limits also exclude ${{\mathit W}}$ bosons with left-handed couplings with masses below 2.9 TeV, at the 95$\%$ confidence level. ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}_{{{R}}}}$ is assumed to be forbidden. See their Fig.5 for limits on $\sigma \cdot{}{{\mathit B}}$ for both cases of left- and right-handed ${{\mathit W}^{\,'}}$.
25  AABOUD 2018AI search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2670 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2930 GeV and $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig. 5 for limits on $\sigma \cdot{}\mathit B$.
26  AABOUD 2018AK search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
27  AABOUD 2018AL search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2900 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
28  AABOUD 2018BG limit is for ${{\mathit W}^{\,'}}$ with SM-like couplings using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Bosonic decays of ${{\mathit W}^{\,'}}$ and ${{\mathit W}}−{{\mathit W}^{\,'}}$ interference are neglected. See Fig. 2 for limits on $\sigma \cdot{}{{\mathit B}}$.
29  AABOUD 2018CH search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2260 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
30  AABOUD 2018F search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 3000 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 3500 GeV and $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 3100 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.5 for limits on $\sigma \cdot{}{{\mathit B}}$.
31  AABOUD 2018K limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}}−{{\mathit W}^{\,'}}$ interference and bosonic decays of ${{\mathit W}^{\,'}}$ are not included. See their Fig. 4 for limit on $\sigma \cdot{}{{\mathit B}}$.
32  SIRUNYAN 2018 limit is for right-handed ${{\mathit W}^{\,'}}$ using $pp$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}_{{{R}}}}$ decay is assumed to be forbidden. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 3.4 TeV if $\mathit M_{{{\mathit \nu}_{{{R}}}}}{}\ll$ $\mathit M_{{{\mathit W}^{\,'}}}$. See their Fig. 5 for exclusion limits on ${{\mathit W}^{\,'}}$ models having both left- and right-handed couplings.
33  SIRUNYAN 2018AX search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. See their Fig.6 for limits on $\sigma \cdot{}$B.
34  SIRUNYAN 2018AZ limit is derived for ${{\mathit W}^{\,'}}$ with SM-like coupling using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. No interference with SM ${{\mathit W}}$ process is considered. The bosonic decays are assumed to be negligible. See their Fig.6 for limits on $\sigma \cdot{}B$.
35  SIRUNYAN 2018BK search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes M$_{{{\mathit W}^{\,'}}}>$ 3100 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
36  SIRUNYAN 2018BO limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
37  SIRUNYAN 2018DJ search for resonances decaying to $WZ$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2270 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
38  SIRUNYAN 2018ED search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If we assume $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2900 GeV and $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively.
39  SIRUNYAN 2018P give this limit for a heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If they assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases to $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 3800 GeV.
40  AABOUD 2017AK search for a new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above is for a ${{\mathit W}^{\,'}}$ boson having axial-vector SM couplings and decaying to quarks with 75$\%$ branching fraction.
41  AABOUD 2017AO search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a ${{\mathit W}^{\,'}}$ in the heavy-vector-triplet model with ${{\mathit g}_{{{V}}}}$ = 3. See their Fig.4 for limits on $\sigma \cdot{}{{\mathit B}}$.
42  AABOUD 2017B search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit c}}{{\overline{\mathit c}}}$; ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ $>$ 1750 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ = ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$, the limit increases ${{\mathit M}}_{{{\mathit W}^{\,'}}}>$ 2310 GeV and ${{\mathit M}}_{{{\mathit W}^{\,'}}}>$ 1730 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.3 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
43  KHACHATRYAN 2017J search for right-handed ${{\mathit W}_{{{R}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \tau}}$ and hypothetical heavy neutrino ${{\mathit N}_{{{\tau}}}}$, with ${{\mathit N}_{{{\tau}}}}$ decaying into ${{\mathit \tau}}{{\mathit j}}{{\mathit j}}$. The quoted limit is for $\mathit M_{{{\mathit N}_{{{\tau}}}}}$ = $\mathit M_{{{\mathit W}_{{{R}}}}}$/2. The limit becomes $\mathit M_{{{\mathit W}_{{{R}}}}}$ $>$ 2350 GeV (1630 GeV) for $\mathit M_{{{\mathit W}_{{{R}}}}}/\mathit M_{{{\mathit N}_{{{\tau}}}}}$ = 0.8 (0.2). See their Fig. 4 for excluded regions in the $\mathit M_{{{\mathit W}_{{{R}}}}}−\mathit M_{{{\mathit N}_{{{\tau}}}}}$ plane.
44  KHACHATRYAN 2017W search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
45  KHACHATRYAN 2017Z limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The bosonic decays of ${{\mathit W}^{\,'}}$ and the interference with SM ${{\mathit W}}$ process are neglected.
46  SIRUNYAN 2017A search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ with ${{\mathit W}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2000 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2400 GeV and $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2300 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.6 for limits on $\sigma \cdot{}\mathit B$.
47  SIRUNYAN 2017AK search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ or ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 and 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2300 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2400 GeV for both ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1. See their Fig.1 and 2 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
48  SIRUNYAN 2017H search for right-handed ${{\mathit W}^{\,'}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}^{\,'}}$ is assumed to decay into ${{\mathit \tau}}$ and a heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying to ${{\mathit \tau}}{{\mathit q}}{{\overline{\mathit q}}}$. The limit above assumes M$_{N}$ = M$_{{{\mathit W}^{\,'}}}$/2.
49  SIRUNYAN 2017I limit is for a right-handed ${{\mathit W}^{\,'}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit becomes ${{\mathit M}}_{{{\mathit W}^{\,'}}}$ $>$ 2400 GeV for ${{\mathit M}}_{{{\mathit \nu}_{{{R}}}}}{}\ll$ ${{\mathit M}}_{{{\mathit W}^{\,'}}}$.
50  SIRUNYAN 2017R search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. Mass regions $\mathit M_{{{\mathit W}^{\,'}}}$ $<$ 2370 GeV and 2870 $<$ $\mathit M_{{{\mathit W}^{\,'}}}$ $<$ 2970 GeV are excluded for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the excluded mass regions are 1000 $<$ $\mathit M_{{{\mathit W}^{\,'}}}$ $<$ 2500 GeV and 2760 $<$ $\mathit M_{{{\mathit W}^{\,'}}}$ $<$ 3300 GeV for ${{\mathit g}_{{{V}}}}$ = 3; 1000 $<$ $\mathit M_{{{\mathit W}^{\,'}}}$ $<$ 2430 GeV and 2810 $<$ $\mathit M_{{{\mathit W}^{\,'}}}$ $<$ 3130 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig.5 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
51  AABOUD 2016AE search for resonances decaying to ${{\mathit V}}{{\mathit V}}$ (${{\mathit V}}$ = ${{\mathit W}}$ or ${{\mathit Z}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Results from ${{\mathit \nu}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}}$, ${{\mathit \nu}}{{\mathit \ell}}{{\mathit q}}{{\mathit q}}$, ${{\mathit \ell}}{{\mathit \ell}}{{\mathit q}}{{\mathit q}}$ and ${{\mathit q}}{{\mathit q}}{{\mathit q}}{{\mathit q}}$ final states are combined. The quoted limit is for a heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3 and $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$.
52  AABOUD 2016V limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The bosonic decays of ${{\mathit W}^{\,'}}$ and the interference with SM ${{\mathit W}}$ process are neglected.
53  AAD 2016R search for ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}^{\,'}}{{\mathit \ell}^{\,'}}$, ${{\mathit \ell}}{{\mathit \ell}}{{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$, and all hadronic channels are combined. The quoted limit assumes ${{\mathit g}}_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/{{\mathit g}}_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = (${{\mathit M}_{{{W}}}}/{{\mathit M}}_{{{\mathit W}^{\,'}}}){}^{2}$.
54  AAD 2016S search for a new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a ${{\mathit W}^{\,'}}$ having SM-like couplings to quarks.
55  KHACHATRYAN 2016AO limit is for a SM-like right-handed using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The quoted limit combines ${{\mathit t}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\mathit b}}$ and ${{\mathit t}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit b}}$ events.
56  KHACHATRYAN 2016AP search for a resonance decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. Both ${{\mathit H}}$ and ${{\mathit W}}$ are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3.
57  KHACHATRYAN 2016BD search for resonance decaying to ${{\mathit H}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The quoted limit is for heavy-vector-triplet (HVT) ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The HVT model ${\mathit m}_{{{\mathit W}^{\,'}}}$ = ${\mathit m}_{{{\mathit Z}^{\,'}}}$ $>$ 1.8 TeV is also obtained by combining ${{\mathit W}^{\,'}}$/ ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$/ ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit b}}{{\mathit b}}$, ${{\mathit q}}{{\mathit q}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit q}}{{\mathit q}}{{\mathit b}}{{\mathit b}}$, and ${{\mathit q}}{{\mathit q}}{{\mathit q}}{{\mathit q}}{{\mathit q}}{{\mathit q}}$ channels.
58  KHACHATRYAN 2016K search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
59  KHACHATRYAN 2016L search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.
60  KHACHATRYAN 2016O limit is for ${{\mathit W}^{\,'}}$ having universal couplings. Interferences with the SM amplitudes are assumed to be absent.
61  AAD 2015AU search for ${{\mathit W}^{\,'}}$ decaying into the ${{\mathit W}}{{\mathit Z}}$ final state with ${{\mathit W}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}^{\,'}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = ($\mathit M_{W}/\mathit M_{{{\mathit W}^{\,'}}}){}^{2}$.
62  AAD 2015AV limit is for a SM like right-handed ${{\mathit W}^{\,'}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ decay is assumed to be forbidden.
63  AAD 2015AZ search for ${{\mathit W}^{\,'}}$ decaying into the ${{\mathit W}}{{\mathit Z}}$ final state with ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = ($\mathit M_{{{\mathit W}}}/\mathit M_{{{\mathit W}^{\,'}}}){}^{2}$.
64  AAD 2015CP search for ${{\mathit W}^{\,'}}$ decaying into the ${{\mathit W}}{{\mathit Z}}$ final state with ${{\mathit W}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = ($\mathit M_{{{\mathit W}}}/\mathit M_{{{\mathit W}^{\,'}}}){}^{2}$.
65  AAD 2015R limit is for a SM like right-handed ${{\mathit W}^{\,'}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ decay is assumed to be forbidden.
66  AAD 2015V search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
67  KHACHATRYAN 2015C search for ${{\mathit W}^{\,'}}$ decaying via ${{\mathit W}}{{\mathit Z}}$ to fully leptonic final states using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=8 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = $\mathit M_{W}$ $\mathit M_{Z}/\mathit M{}^{2}_{{{\mathit W}^{\,'}}}$.
68  KHACHATRYAN 2015T limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling which interferes the SM ${{\mathit W}}$ boson constructively using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. For ${{\mathit W}^{\,'}}$ without interference, the limit becomes $>$ 3280 GeV.
69  KHACHATRYAN 2014O search for right-handed ${{\mathit W}_{{{R}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \ell}}$ and hypothetical heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying into ${{\mathit \ell}}{{\mathit j}}$ ${{\mathit j}}$. The quoted limit is for ${{\mathit M}}_{{{\mathit \nu}_{{{eR}}}}}$ = ${{\mathit M}}_{{{\mathit \nu}}_{{{\mathit \mu}} {{\mathit R}}}}$ = ${{\mathit M}}_{{{\mathit W}_{{{R}}}}}$/2. See their Fig. 3 and Fig. 5 for excluded regions in the ${{\mathit M}}_{{{\mathit W}_{{{R}}}}}−{{\mathit M}}_{{{\mathit \nu}}}$ plane.
70  AAD 2023BF search for ${{\mathit W}^{\,'}}$ decaying to ${{\mathit W}}{{\mathit Z}^{\,'}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The mass difference between ${{\mathit W}^{\,'}}$ and ${{\mathit Z}^{\,'}}$ is assumed to be 250 GeV. See their Fig. 9(a) for limits on $\sigma \cdot{}B$ as a function of $\mathit M_{{{\mathit W}^{\,'}}}$.
71  AAD 2023CG search for right-handed ${{\mathit W}_{{{R}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \ell}}$ and hypothetical heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying into ${{\mathit \ell}}{{\mathit j}}{{\mathit j}}$. See their Fig. 9 for limits in ${\mathit m}_{{{\mathit N}}}-{\mathit m}_{{{\mathit W}_{{{R}}}}}$ plane.
72  AAD 2023CK search for a new resonance decaying to ${{\mathit H}}{{\mathit X}}$ ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit X}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}^{\,'}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 12 for limits on $\sigma \cdot{}B$.
73  AAD 2023U search for a narrow charged vector boson decaying to ${{\mathit W}}{{\mathit \gamma}}$. See their Fig. 8(d) for the exclusion limit in ${\mathit m}_{{{\mathit W}^{\,'}}}−\sigma \cdot{}B$ plane.
74  TUMASYAN 2022 search for KK excited ${{\mathit W}}$ decaying in cascade to three ${{\mathit W}}$ via a scalar radion ${{\mathit R}}$. See their Fig. 4 for limits in $\mathit M_{{{\mathit W}^{\,'}}}−{{\mathit M}_{{{R}}}}$ plane.
75  TUMASYAN 2022AL search for resonances decaying to ${{\mathit t}}{{\mathit B}}$ or ${{\mathit b}}{{\mathit T}}$ with vector-like quarks ${{\mathit B}}$ (${{\mathit T}}$) subsequently decaying to ${{\mathit b}}{{\mathit H}}$ or ${{\mathit b}}{{\mathit Z}}$ (${{\mathit t}}{{\mathit H}}$ or ${{\mathit t}}{{\mathit Z}}$). See their Fig. 7 for limits on $\sigma \cdot{}B$.
76  TUMASYAN 2022B search for a narrow charged vector boson decaying to ${{\mathit W}}{{\mathit \gamma}}$. See their Fig. 5 for limits on $\sigma \cdot{}B$.
77  TUMASYAN 2022I search for KK excited ${{\mathit W}}$ decaying in cascade to three ${{\mathit W}}$ via a scalar radion ${{\mathit R}}$. See their Fig. 10 for limits in $\mathit M_{{{\mathit W}^{\,'}}}−{{\mathit M}_{{{R}}}}$ plane.
78  TUMASYAN 2022P search for right handed ${{\mathit W}_{{{R}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisiions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \ell}}$ and hypothetical heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying to ${{\mathit \ell}}{{\mathit j}}{{\mathit j}}$. See their Fig. 7 for excluded regions in ${{\mathit M}}_{{{\mathit W}_{{{R}}}}}−{{\mathit M}_{{{N}}}}$ plane.
79  AAD 2020AD search for a narrow resonance decaying to a pair of large-radius-jets ${{\mathit J}_{{{1}}}}$ and ${{\mathit J}_{{{2}}}}$ employing a machine-learning procedure. See their Fig. 3 for limits on $\sigma \cdot{}B$ depending on assumptions about invariant masses for ${{\mathit J}_{{{1}}}}$, ${{\mathit J}_{{{2}}}}$, and ${{\mathit J}_{{{1}}}}{{\mathit J}_{{{2}}}}$.
80  AAD 2020W search for ${{\mathit W}^{\,'}}$ decaying to ${{\mathit W}}{{\mathit Z}^{\,'}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 5(b) for limits on $\sigma \cdot{}B$ as a function of ${\mathit m}_{{{\mathit Z}^{\,'}}}$. The ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}^{\,'}}$ branching fraction was chosen to be 0.5 and the mass difference between the ${{\mathit W}^{\,'}}$ and ${{\mathit Z}^{\,'}}$ was set to 250 GeV.
81  AABOUD 2019B search for right-handed ${{\mathit W}_{{{R}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \ell}}$ and hypothetical heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying to ${{\mathit \ell}}{{\mathit j}}{{\mathit j}}$. See their Figs. 7 and 8 for excluded regions in $\mathit M_{{{\mathit W}_{{{R}}}}}$ $−$ ${{\mathit M}_{{{N}}}}$ plane.
82  AABOUD 2019BB search for right handed ${{\mathit W}_{{{R}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \ell}}$ and a boosted hypothetical heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying to ${{\mathit \ell}}$ and a large radius jet ${{\mathit j}}$ = ${{\mathit q}}{{\overline{\mathit q}}}$. See their Fig. 7 for excluded regions in ${{\mathit M}}_{{{\mathit W}_{{{R}}}}}−{{\mathit M}_{{{N}}}}$ plane.
83  SIRUNYAN 2019V search for a new resonance decaying to a top quark and a heavy vector-like bottom partner ${{\mathit B}}$ decaying to ${{\mathit H}}{{\mathit b}}$ (or a bottom quark and a heavy vector-like top partner ${{\mathit T}}$ decaying to ${{\mathit H}}{{\mathit t}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
84  AABOUD 2018AA search for a narrow charged vector boson decaying to ${{\mathit W}}{{\mathit \gamma}}$. See their Fig. 9 for the exclusion limit in M$_{{{\mathit W}^{\,'}}}$ $−$ $\sigma $B plane.
85  AABOUD 2018AD search for resonances decaying to ${{\mathit H}}{{\mathit X}}$ ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit X}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}^{\,'}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Figs. $3 - 5$ for limits on $\sigma \cdot{}$B.
86  AABOUD 2018CJ search for heavy-vector-triplet ${{\mathit W}^{\,'}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for model with ${{\mathit g}_{{{V}}}}$ = 3 assuming $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$. The limit becomes $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 5500 GeV for model with ${{\mathit g}_{{{V}}}}$ = 1.
87  SIRUNYAN 2018CV search for right-handed ${{\mathit W}_{{{R}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \ell}}$ and hypothetical heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying to ${{\mathit \ell}}{{\mathit j}}{{\mathit j}}$. The quoted limit is for ${{\mathit M}_{{{N}}}}$ = ${{\mathit M}}_{{{\mathit W}_{{{R}}}}}$/2. See their Fig. 6 for excluded regions in the ${{\mathit M}}_{{{\mathit W}_{{{R}}}}}−{{\mathit M}_{{{N}}}}$ plane.
88  KHACHATRYAN 2017U search for resonances decaying to ${{\mathit H}}{{\mathit W}}$ ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$; ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit on the heavy-vector-triplet model is $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2 TeV for ${{\mathit g}_{{{V}}}}$ = 3, in which constraints from the ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$ ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$; ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit \nu}}{{\overline{\mathit \nu}}}$) are combined. See their Fig.3 and Fig.4 for limits on $\sigma \cdot{}\mathit B$.
89  AAD 2015BB search for ${{\mathit W}^{\,'}}$ decaying into ${{\mathit W}}{{\mathit H}}$ with ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$. See their Fig. 4 for the exclusion limits in the heavy vector triplet benchmark model parameter space.
90  AALTONEN 2015C limit is for a SM-like right-handed ${{\mathit W}^{\,'}}$ assuming ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ decays are forbidden, using ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.96 TeV. See their Fig. 3 for limit on $\mathit g_{{{\mathit W}^{\,'}}}/\mathit g_{{{\mathit W}}}$.
91  KHACHATRYAN 2015V search new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
92  AAD 2014AT search for a narrow charged vector boson decaying to ${{\mathit W}}{{\mathit \gamma}}$. See their Fig. 3a for the exclusion limit in ${\mathit m}_{{{\mathit W}^{\,'}}}−\sigma \mathit B$ plane.
93  AAD 2014S search for ${{\mathit W}^{\,'}}$ decaying into the ${{\mathit W}}{{\mathit Z}}$ final state with ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=8 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = ($\mathit M_{{{\mathit W}}}/\mathit M_{{{\mathit W}^{\,'}}}){}^{2}$.
94  KHACHATRYAN 2014 search for ${{\mathit W}^{\,'}}$ decaying into ${{\mathit W}}{{\mathit Z}}$ final state with ${{\mathit W}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=8 TeV. The quoted limit assumes ${{\mathit g}}_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/{{\mathit g}}_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = (${{\mathit M}_{{{W}}}}/{{\mathit M}}_{{{\mathit W}^{\,'}}}){}^{2}$.
95  KHACHATRYAN 2014A search for ${{\mathit W}^{\,'}}$ decaying into the ${{\mathit W}}{{\mathit Z}}$ final state with ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$, or ${{\mathit W}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$. ${{\mathit p}}{{\mathit p}}$ collisions data at $\sqrt {s }$=8 TeV are used for the search. See their Fig. 13 for the exclusion limit on the number of events in the mass$−$width plane.
96  AAD 2013AO search for ${{\mathit W}^{\,'}}$ decaying into the ${{\mathit W}}{{\mathit Z}}$ final state with ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ 2 ${{\mathit j}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = ($\mathit M_{{{\mathit W}}}/\mathit M_{{{\mathit W}^{\,'}}}){}^{2}$.
97  CHATRCHYAN 2013AJ search for resonances decaying to ${{\mathit W}}{{\mathit Z}}$ pair, using the hadronic decay modes of ${{\mathit W}}$ and ${{\mathit Z}}$, in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. See their Fig. 7 for the limit on the cross section.
98  CHATRCHYAN 2013AQ limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling which interferes with the SM ${{\mathit W}}$ boson using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV.
99  CHATRCHYAN 2013E limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling which intereferes with the SM ${{\mathit W}}$ boson using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. For ${{\mathit W}^{\,'}}$ with right-handed coupling, the bound becomes $>$1850 GeV ($>$1910 GeV) if ${{\mathit W}^{\,'}}$ decays to both leptons and quarks (only to quarks). If both left- and right-handed couplings are present, the limit becomes $>$1640 GeV.
100  CHATRCHYAN 2013U search for ${{\mathit W}^{\,'}}$ decaying to the ${{\mathit W}}{{\mathit Z}}$ final state, with ${{\mathit W}}$ decaying into jets, in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = ($\mathit M_{{{\mathit W}}}/\mathit M_{{{\mathit W}^{\,'}}}){}^{2}$.
101  The AAD 2012AV quoted limit is for a SM-like right-handed ${{\mathit W}^{\,'}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ decay is assumed to be forbidden.
102  AAD 2012BB use ${{\mathit p}}{{\mathit p}}$ collisions data at $\sqrt {s }$=7 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = ($\mathit M_{{{\mathit W}}}/\mathit M_{{{\mathit W}^{\,'}}}){}^{2}$.
103  AAD 2012CK search for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}^{\,'}}$, ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit q}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions. See their Fig. 5 for the limit on $\sigma \cdot{}$B.
104  AAD 2012CR use ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV.
105  AAD 2012M search for right-handed ${{\mathit W}_{{{R}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \ell}}$ and hypothetical heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying into ${{\mathit \ell}}{{\mathit j}}{{\mathit j}}$. See their Fig. 4 for the limit in the ${\mathit m}_{{{\mathit N}}}−{\mathit m}_{{{\mathit W}^{\,'}}}$ plane.
106  AALTONEN 2012N search for ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}^{\,'}}$, ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit d}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot{}$B.
107  CHATRCHYAN 2012AR search for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}^{\,'}}$, ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit d}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions. See their Fig. 2 for the limit on $\sigma \cdot{}$B.
108  CHATRCHYAN 2012BG search for right-handed ${{\mathit W}_{{{R}}}}$ in collisions $\sqrt {s }$ = 7 TeV. ${{\mathit W}_{{{R}}}}$ is assumed to decay into ${{\mathit \ell}}$ and hypothetical heavy neutrino ${{\mathit N}}$, with ${{\mathit N}}$ decaying into ${{\mathit \ell}}{{\mathit j}}{{\mathit j}}$. See their Fig. 3 for the limit in the ${\mathit m}_{{{\mathit N}}}−{\mathit m}_{{{\mathit W}^{\,'}}}$ plane.
109  ABAZOV 2011H use data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.96 TeV. The quoted limit is obtained assuming ${{\mathit W}^{\,'}}{{\mathit W}}{{\mathit Z}}$ coupling strength is the same as the ordinary ${{\mathit W}}{{\mathit W}}{{\mathit Z}}$ coupling strength in the Standard Model.
110  ABAZOV 2011L limit is for ${{\mathit W}^{\,'}}$ with SM-like coupling which interferes with the SM ${{\mathit W}}$ boson, using ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.96 TeV. For ${{\mathit W}^{\,'}}$ with right-handed coupling, the bound becomes $>$885 GeV ($>$890 GeV) if ${{\mathit W}^{\,'}}$ decays to both leptons and quarks (only to quarks). If both left- and right-handed couplings present, the limit becomes $>$916 GeV.
111  AALTONEN 2010N use ${{\mathit p}}{{\overline{\mathit p}}}$ collision data at $\sqrt {s }$=1.96 TeV. The quoted limit assumes $\mathit g_{{{\mathit W}^{\,'}} {{\mathit W}} {{\mathit Z}}}/\mathit g_{{{\mathit W}} {{\mathit W}} {{\mathit Z}}}$ = ($\mathit M_{{{\mathit W}}}/\mathit M_{{{\mathit W}^{\,'}}}){}^{2}$. See their Fig.$~$4 for limits in mass-coupling plane.
112  AALTONEN 2009AC search for new particle decaying to dijets using ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.96 TeV.
113  The ACOSTA 2003B quoted limit is for $\mathit M_{{{\mathit W}^{\,'}}}{}\gg\mathit M_{{{\mathit \nu}_{{{R}}}}}$, using ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.8 TeV. For $\mathit M_{{{\mathit W}^{\,'}}}<\mathit M_{{{\mathit \nu}_{{{R}}}}}$, $\mathit M_{{{\mathit W}^{\,'}}}$ between 225 and 566 GeV is excluded.
114  The quoted limit is obtained assuming ${{\mathit W}^{\,'}}{{\mathit W}}{{\mathit Z}}$ coupling strength is the same as the ordinary ${{\mathit W}}{{\mathit W}}{{\mathit Z}}$ coupling strength in the Standard Model, using ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.8 TeV. See their Fig.$~$2 for the limits on the production cross sections as a function of the ${{\mathit W}^{\,'}}$ width.
115  AFFOLDER 2001I combine a new bound on ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ of 754 GeV, using ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.8 TeV, with the bound of ABE 2000 on ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}$ to obtain quoted bound.
116  ABE 1997G search for new particle decaying to dijets using ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.8 TeV.
117  For bounds on ${{\mathit W}_{{{R}}}}$ with nonzero right-handed mass, see Fig.$~$5 from ABACHI 1996C.
118  ABACHI 1995E assume that the decay ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$ is suppressed and that the neutrino from ${{\mathit W}^{\,'}}$ decay is stable and has a mass significantly less ${\mathit m}_{{{\mathit W}^{\,'}}}$.
119  RIZZO 1993 analyses CDF limit on possible two-jet resonances. The limit is sensitive to the inclusion of the assumed ${{\mathit K}}$ factor.
References