$\text{none 250 - 5100}$ |
95 |
1 |
|
ATLS |
$\text{none 600 - 2000}$ |
95 |
2 |
|
ATLS |
$> 2420$ |
95 |
3 |
|
ATLS |
$\bf{\text{none 200 - 4500}}$ |
95 |
4 |
|
CMS |
$\text{none 600 - 2700}$ |
95 |
5 |
|
CMS |
$\bf{> 4500}$ |
95 |
6 |
|
ATLS |
$> 2100$ |
95 |
7 |
|
CMS |
$> 3370$ |
95 |
8 |
|
CMS |
$\text{none 600 - 2100, 2300 - 2600}$ |
95 |
9 |
|
CMS |
$> 3360$ |
95 |
10 |
|
ATLS |
$>2900$ |
95 |
11 |
|
CMS |
$\text{none 1200 - 1700}$ |
95 |
12 |
|
CMS |
$> 2900$ |
95 |
13 |
|
ATLS |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
|
|
14 |
|
RVUE |
$>1900$ |
95 |
15 |
|
ATLS |
$>2020$ |
95 |
16 |
|
ATLS |
$> 1400$ |
95 |
17 |
|
ATLS |
$> 1470$ |
95 |
18 |
|
CMS |
$> 2590$ |
95 |
19 |
|
CMS |
$> 2220$ |
95 |
20 |
|
ATLS |
$>1400$ |
95 |
21 |
|
CMS |
$> 1071$ |
95 |
22 |
|
CDF |
$> 1023$ |
95 |
23 |
|
D0 |
$\text{none 247 - 544}$ |
95 |
24 |
|
CDF |
$\text{none 320 - 740}$ |
95 |
25 |
|
CDF |
$> 963$ |
95 |
23 |
|
CDF |
$> 1403$ |
95 |
26 |
|
RVUE |
$> 1305$ |
95 |
27 |
|
DLPH |
$> 399$ |
95 |
28 |
|
CDF |
$\text{none 400 - 640}$ |
95 |
|
|
D0 |
$>1018$ |
95 |
29 |
|
OPAL |
$>670$ |
95 |
30 |
|
D0 |
$>1500$ |
95 |
31 |
|
RVUE |
$>710$ |
95 |
32 |
|
DLPH |
$>898$ |
95 |
33 |
|
ALEP |
$>809$ |
95 |
34 |
|
RVUE |
$>690$ |
95 |
35 |
|
CDF |
$>398$ |
95 |
36 |
|
CHM2 |
$>237$ |
90 |
37 |
|
UA2 |
$\text{none 260 - 600}$ |
95 |
38 |
|
RVUE |
$>426$ |
90 |
39 |
|
VNS |
1
AAD 2019L search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
2
AABOUD 2018AB search for resonances decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
3
AABOUD 2018G search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
4
SIRUNYAN 2018BB search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig.5 for limits on the ${{\mathit Z}^{\,'}}$ coupling strengths with light quarks.
|
5
SIRUNYAN 2018BO search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
6
AABOUD 2017AT search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
7
KHACHATRYAN 2017H search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
8
KHACHATRYAN 2017T search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8, 13 TeV.
|
9
KHACHATRYAN 2017W search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
10
AABOUD 2016U search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
11
KHACHATRYAN 2015AE search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
|
12
KHACHATRYAN 2015V search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
|
13
AAD 2014V search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
|
14
BOBOVNIKOV 2018 use the ATLAS limits on $\sigma $( ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit Z}^{\,'}}$ )$\cdot{}$B( ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$ ) to constrain the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing parameter $\xi $. See their Fig. 11 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−\xi $ plane.
|
15
AABOUD 2016AA search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
16
AAD 2015AM search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
|
17
AAD 2013S search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
|
18
CHATRCHYAN 2013A use ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV.
|
19
CHATRCHYAN 2013AF search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV and 8 TeV.
|
20
AAD 2012CC search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
|
21
CHATRCHYAN 2012O search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
|
22
AALTONEN 2011I search for resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
|
23
ABAZOV 2011A, AALTONEN 2009T, AALTONEN 2007H, and ABULENCIA 2006L search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96$~$TeV.
|
24
The quoted limit assumes $\mathit g_{ {{\mathit W}} {{\mathit W}} {{\mathit Z}^{\,'}} }/\mathit g_{ {{\mathit W}} {{\mathit W}} {{\mathit Z}} }$ = ($\mathit M_{{{\mathit W}}}/\mathit M_{{{\mathit Z}^{\,'}}}){}^{2}$. See their Fig.$~$4 for limits in mass-coupling plane.
|
25
AALTONEN 2009AC search for new particle decaying to dijets.
|
26
ERLER 2009 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0026<\theta <$ 0.0006.
|
27
ABDALLAH 2006C use data $\sqrt {s }$ = $130 - 207$ GeV.
|
28
ACOSTA 2005R search for resonances decaying to tau lepton pairs in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
|
29
ABBIENDI 2004G give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $−$0.00422 $<\theta <$0.00091. $\sqrt {s }$ = 91 to 207$~$GeV.
|
30
ABAZOV 2001B search for resonances in ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ at $\sqrt {\mathit s }$=1.8 TeV. They find $\sigma \cdot{}$B( ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit e}}{{\mathit e}}$ )$<0.06~$pb for $\mathit M_{{{\mathit Z}^{\,'}}}>500$ GeV.
|
31
CHEUNG 2001B limit is derived from bounds on contact interactions in a global electroweak analysis.
|
32
ABREU 2000S uses LEP data at $\sqrt {\mathit s }$=90 to 189 GeV.
|
33
BARATE 2000I search for deviations in cross section and asymmetries in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ fermions at $\sqrt {\mathit s }$=90 to 183 GeV. Assume $\theta $=0. Bounds in the mass-mixing plane are shown in their Figure$~$18.
|
34
ERLER 1999 give 90$\%$CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0041<\theta <0.0003$. $\rho _{0}$=1 is assumed.
|
35
ABE 1997S find $\sigma\mathrm {({{\mathit Z}^{\,'}})}{\times }$B( ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )$<40~$fb for ${\mathit m}_{{{\mathit Z}^{\,'}}}>600$ GeV at $\sqrt {\mathit s }$= 1.8 TeV.
|
36
VILAIN 1994B assume ${\mathit m}_{{{\mathit t}}}$ = 150 GeV.
|
37
ALITTI 1993 search for resonances in the two-jet invariant mass. The limit assumes B( ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ )=$0.7$. See their Fig.$~$5 for limits in the ${\mathit m}_{{{\mathit Z}^{\,'}}}−$B( ${{\mathit q}}{{\overline{\mathit q}}}$ ) plane.
|
38
RIZZO 1993 analyses CDF limit on possible two-jet resonances.
|
39
ABE 1990F use data for $\mathit R$, $\mathit R_{ {{\mathit \ell}} {{\mathit \ell}} }$, and $\mathit A_{ {{\mathit \ell}} {{\mathit \ell}} }$. They fix ${\mathit m}_{{{\mathit W}}}$ = $80.49$ $\pm0.43$ $\pm0.24$ GeV and ${\mathit m}_{{{\mathit Z}}}$ = $91.13$ $\pm0.03$ GeV.
|