$\text{none 250 - 4800}$ |
95 |
1 |
|
ATLS |
$\bf{> 4100}$ |
95 |
2 |
|
ATLS |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
|
|
3 |
|
RVUE |
$> 3050$ |
95 |
4 |
|
ATLS |
$> 2620$ |
95 |
5 |
|
ATLS |
$> 1970$ |
95 |
6 |
|
ATLS |
$> 930$ |
95 |
7 |
|
CDF |
$> 903$ |
95 |
8 |
|
D0 |
$> 1022$ |
95 |
9 |
|
RVUE |
$> 862$ |
95 |
8 |
|
CDF |
$> 892$ |
95 |
10 |
|
CDF |
$> 1141$ |
95 |
11 |
|
RVUE |
$> 822$ |
95 |
8 |
|
CDF |
$> 680$ |
95 |
|
|
ALEP |
$> 545$ |
95 |
12 |
|
DLPH |
$> 740$ |
|
8 |
|
CDF |
$> 690$ |
95 |
13 |
|
CDF |
$>781$ |
95 |
14 |
|
OPAL |
$>2100$ |
|
15 |
|
COSM |
$>680$ |
95 |
16 |
|
RVUE |
$>440$ |
95 |
17 |
|
DLPH |
$>533$ |
95 |
18 |
|
ALEP |
$>554$ |
95 |
19 |
|
RVUE |
|
|
20 |
|
RVUE |
|
|
21 |
|
RVUE |
$>545$ |
95 |
22 |
|
RVUE |
$\text{(>1368)}$ |
95 |
23 |
|
RVUE |
$>215$ |
95 |
24 |
|
RVUE |
$>595$ |
95 |
25 |
|
CDF |
$>190$ |
95 |
26 |
|
VNS |
$>262$ |
95 |
27 |
|
CHM2 |
$\text{[>1470]}$ |
|
28 |
|
COSM |
$>231$ |
90 |
29 |
|
VNS |
$\text{[> 1140]}$ |
|
30 |
|
COSM |
$\text{[> 2100]}$ |
|
31 |
|
ASTR |
1
AAD 2019L search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
2
AABOUD 2017AT search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
3
BOBOVNIKOV 2018 use the ATLAS limits on $\sigma $( ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit Z}^{\,'}}$ )$\cdot{}$B( ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$ ) to constrain the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing parameter $\xi $. See their Fig. 9 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−\xi $ plane.
|
4
AABOUD 2016U search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
5
AAD 2014V search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
|
6
AAD 2012CC search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
|
7
AALTONEN 2011I search for resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
|
8
ABAZOV 2011A, AALTONEN 2009T, AALTONEN 2007H, and ABULENCIA 2006L search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96$~$TeV.
|
9
DEL-AGUILA 2010 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0011<\theta <$ 0.0007.
|
10
AALTONEN 2009V search for resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96$~$TeV.
|
11
ERLER 2009 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0016<\theta <$ 0.0006.
|
12
ABDALLAH 2006C give 95$\%$ CL limit $\vert \theta \vert <$ 0.0031. See their Fig. 14 for limit contours in the mass-mixing plane.
|
13
ABULENCIA 2005A search for resonances decaying to electron or muon pairs in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
|
14
ABBIENDI 2004G give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $−$0.00099 $<\theta <$ 0.00194. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt {s }$ = 91 to 207$~$GeV.
|
15
BARGER 2003B limit is from the nucleosynthesis bound on the effective number of light neutrino $\delta \mathit N_{{{\mathit \nu}}}<$1. The quark-hadron transition temperature $\mathit T_{\mathit c}$=150 MeV is assumed. The limit with $\mathit T_{\mathit c}$=400 MeV is $>$4300 GeV.
|
16
CHEUNG 2001B limit is derived from bounds on contact interactions in a global electroweak analysis.
|
17
ABREU 2000S give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $\vert \theta \vert <0.0017$. See their Fig.$~$6 for the limit contour in the mass-mixing plane. $\sqrt {\mathit s }$=90 to 189 GeV.
|
18
BARATE 2000I search for deviations in cross section and asymmetries in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ fermions at $\sqrt {\mathit s }$=90 to 183 GeV. Assume $\theta $=0. Bounds in the mass-mixing plane are shown in their Figure$~$18.
|
19
CHO 2000 use various electroweak data to constrain ${{\mathit Z}^{\,'}}$ models assuming ${\mathit m}_{{{\mathit H}}}$=100 GeV. See Fig.$~$3 for limits in the mass-mixing plane.
|
20
ERLER 2000 discuss the possibility that a discrepancy between the observed and predicted values of ${{\mathit Q}_{{W}}}({}^{}\mathrm {Cs}$) is due to the exchange of ${{\mathit Z}^{\,'}}$. The data are better described in a certain class of the ${{\mathit Z}^{\,'}}$ models including ${{\mathit Z}_{{LR}}}$ and ${{\mathit Z}_{{\chi}}}$.
|
21
ROSNER 2000 discusses the possibility that a discrepancy between the observed and predicted values of ${{\mathit Q}_{{W}}}({}^{}\mathrm {Cs}$) is due to the exchange of ${{\mathit Z}^{\,'}}$. The data are better described in a certain class of the ${{\mathit Z}^{\,'}}$ models including ${{\mathit Z}_{{\chi}}}$.
|
22
ERLER 1999 give 90$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0020<\theta <0.0015$.
|
23
ERLER 1999 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in $\mathit E_{6}$.
|
24
CONRAD 1998 limit is from measurements at CCFR, assuming no ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing.
|
25
ABE 1997S find $\sigma\mathrm {({{\mathit Z}^{\,'}})}{\times }$B( ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )$<40~$fb for ${\mathit m}_{{{\mathit Z}^{\,'}}}>600$ GeV at $\sqrt {\mathit s }$= 1.8 TeV.
|
26
${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing is assumed to be zero. $\sqrt {\mathit s }$= $57.77$ GeV.
|
27
VILAIN 1994B assume ${\mathit m}_{{{\mathit t}}}$ = 150 GeV and $\theta $=0. See Fig.$~$2 for limit contours in the mass-mixing plane.
|
28
FARAGGI 1991 limit assumes the nucleosynthesis bound on the effective number of neutrinos $\Delta {{\mathit N}_{{\nu}}}$ $<$ $0.5$ and is valid for ${\mathit m}_{{{\mathit \nu}_{{R}}}}$ $<$ 1 MeV.
|
29
ABE 1990F use data for $\mathit R$, $\mathit R_{ {{\mathit \ell}} {{\mathit \ell}} }$, and $\mathit A_{ {{\mathit \ell}} {{\mathit \ell}} }$. ABE 1990F fix ${\mathit m}_{{{\mathit W}}}$ = $80.49$ $\pm0.43$ $\pm0.24$ GeV and ${\mathit m}_{{{\mathit Z}}}$ = $91.13$ $\pm0.03$ GeV.
|
30
Assumes the nucleosynthesis bound on the effective number of light neutrinos ($\delta \mathit N_{{{\mathit \nu}}}$ $<~$1) and that ${{\mathit \nu}_{{R}}}$ is light (${ {}\lesssim{} }~$1 MeV).
|
31
GRIFOLS 1990 limit holds for ${\mathit m}_{{{\mathit \nu}_{{R}}}}{ {}\lesssim{} }~$1 MeV. See also GRIFOLS 1990D, RIZZO 1991 .
|