$\bf{> 3900}$ |
95 |
1 |
|
ATLS |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
|
|
2 |
|
RVUE |
$> 2810$ |
95 |
3 |
|
ATLS |
$> 1870$ |
95 |
4 |
|
ATLS |
$> 938$ |
95 |
5 |
|
CDF |
$> 923$ |
95 |
6 |
|
D0 |
$> 488$ |
95 |
7 |
|
RVUE |
$> 877$ |
95 |
6 |
|
CDF |
$> 904$ |
95 |
8 |
|
CDF |
$> 427$ |
95 |
9 |
|
RVUE |
$> 891$ |
95 |
6 |
|
CDF |
$> 350$ |
95 |
|
|
ALEP |
$> 360$ |
95 |
10 |
|
DLPH |
$> 745$ |
|
6 |
|
CDF |
$> 720$ |
95 |
11 |
|
CDF |
$>515$ |
95 |
12 |
|
OPAL |
$>1600$ |
|
13 |
|
COSM |
$>310$ |
95 |
14 |
|
DLPH |
$>329$ |
95 |
15 |
|
ALEP |
$>619$ |
95 |
16 |
|
RVUE |
$>365$ |
95 |
17 |
|
RVUE |
$>87$ |
95 |
18 |
|
RVUE |
$>620$ |
95 |
19 |
|
CDF |
$>100$ |
95 |
20 |
|
CHM2 |
$>125$ |
90 |
21 |
|
VNS |
$\text{[> 820]}$ |
|
22 |
|
COSM |
$\text{[> 3300]}$ |
|
23 |
|
ASTR |
$\text{[> 1040]}$ |
|
22 |
|
COSM |
1
AABOUD 2017AT search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
2
BOBOVNIKOV 2018 use the ATLAS limits on $\sigma $( ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit Z}^{\,'}}$ )$\cdot{}$B( ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$ ) to constrain the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing parameter $\xi $. See their Fig. 9 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−\xi $ plane.
|
3
AABOUD 2016U search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
|
4
AAD 2012CC search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
|
5
AALTONEN 2011I search for resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
|
6
ABAZOV 2011A, AALTONEN 2009T, AALTONEN 2007H, and ABULENCIA 2006L search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96$~$TeV.
|
7
DEL-AGUILA 2010 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0023<\theta <$ 0.0027.
|
8
AALTONEN 2009V search for resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96$~$TeV.
|
9
ERLER 2009 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0047<\theta <$ 0.0021.
|
10
ABDALLAH 2006C give 95$\%$ CL limit $\vert \theta \vert <$ 0.0092. See their Fig. 14 for limit contours in the mass-mixing plane.
|
11
ABULENCIA 2005A search for resonances decaying to electron or muon pairs in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
|
12
ABBIENDI 2004G give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $−$0.00447 $<\theta <$0.00331. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt {s }$ = 91 to 207$~$GeV.
|
13
BARGER 2003B limit is from the nucleosynthesis bound on the effective number of light neutrino $\delta \mathit N_{{{\mathit \nu}}}<$1. The quark-hadron transition temperature $\mathit T_{\mathit c}$=150 MeV is assumed. The limit with $\mathit T_{\mathit c}$=400 MeV is $>$3300 GeV.
|
14
ABREU 2000S give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $\vert \theta \vert <0.0024$. See their Fig.$~$6 for the limit contour in the mass-mixing plane. $\sqrt {\mathit s }$=90 to 189 GeV.
|
15
BARATE 2000I search for deviations in cross section and asymmetries in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ fermions at $\sqrt {\mathit s }$=90 to 183 GeV. Assume $\theta $=0. Bounds in the mass-mixing plane are shown in their Figure$~$18.
|
16
CHO 2000 use various electroweak data to constrain ${{\mathit Z}^{\,'}}$ models assuming ${\mathit m}_{{{\mathit H}}}$=100 GeV. See Fig.$~$3 for limits in the mass-mixing plane.
|
17
ERLER 1999 give 90$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0062<\theta <0.0011$.
|
18
CONRAD 1998 limit is from measurements at CCFR, assuming no ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing.
|
19
ABE 1997S find $\sigma\mathrm {({{\mathit Z}^{\,'}})}{\times }$B( ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )$<40~$fb for ${\mathit m}_{{{\mathit Z}^{\,'}}}>600$ GeV at $\sqrt {\mathit s }$= 1.8 TeV.
|
20
VILAIN 1994B assume ${\mathit m}_{{{\mathit t}}}$ = 150 GeV and $\theta $=0. See Fig.$~$2 for limit contours in the mass-mixing plane.
|
21
ABE 1990F use data for $\mathit R$, $\mathit R_{ {{\mathit \ell}} {{\mathit \ell}} }$, and $\mathit A_{ {{\mathit \ell}} {{\mathit \ell}} }$. ABE 1990F fix ${\mathit m}_{{{\mathit W}}}$ = $80.49$ $\pm0.43$ $\pm0.24$ GeV and ${\mathit m}_{{{\mathit Z}}}$ = $91.13$ $\pm0.03$ GeV.
|
22
These authors claim that the nucleosynthesis bound on the effective number of light neutrinos ($\delta \mathit N_{{{\mathit \nu}}}$ $<~$1) constrains ${{\mathit Z}^{\,'}}$ masses if ${{\mathit \nu}_{{R}}}$ is light (${ {}\lesssim{} }~$1 MeV).
|
23
GRIFOLS 1990 limit holds for ${\mathit m}_{{{\mathit \nu}_{{R}}}}{ {}\lesssim{} }~$1 MeV. See also GRIFOLS 1990D, RIZZO 1991 .
|