$\bf{> 1162}$ |
95 |
1 |
|
RVUE |
$\bf{>630}$ |
95 |
2 |
|
CDF |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
|
|
3 |
|
RVUE |
$> 998$ |
95 |
4 |
|
RVUE |
$> 600$ |
95 |
|
|
ALEP |
$> 455$ |
95 |
5 |
|
DLPH |
$>518$ |
95 |
6 |
|
OPAL |
$>860$ |
95 |
7 |
|
RVUE |
$>380$ |
95 |
8 |
|
DLPH |
$>436$ |
95 |
9 |
|
ALEP |
$>550$ |
95 |
10 |
|
RVUE |
|
|
11 |
|
RVUE |
|
|
12 |
|
RVUE |
$\text{(>1205)}$ |
90 |
13 |
|
RVUE |
$>564$ |
95 |
14 |
|
RVUE |
$\text{(>1673)}$ |
95 |
15 |
|
RVUE |
$\text{(>1700)}$ |
68 |
16 |
|
RVUE |
$>244$ |
95 |
17 |
|
RVUE |
$>253$ |
95 |
18 |
|
CHM2 |
$\text{none 200 - 600}$ |
95 |
19 |
|
RVUE |
$\text{[> 2000]}$ |
|
|
|
COSM |
$\text{none 200 - 500}$ |
|
20 |
|
ASTR |
$\text{none 350 - 2400}$ |
|
21 |
|
ASTR |
1
DEL-AGUILA 2010 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0012<\theta <$ 0.0004.
|
2
ABE 1997S find $\sigma\mathrm {({{\mathit Z}^{\,'}})}{\times }$B( ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )$<40~$fb for ${\mathit m}_{{{\mathit Z}^{\,'}}}>600$ GeV at $\sqrt {\mathit s }$= 1.8 TeV.
|
3
BOBOVNIKOV 2018 use the ATLAS limits on $\sigma $( ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit Z}^{\,'}}$ )$\cdot{}$B( ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$ ) to constrain the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing parameter $\xi $. See their Fig. 10 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−\xi $ plane.
|
4
ERLER 2009 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0013<\theta <$ 0.0006.
|
5
ABDALLAH 2006C give 95$\%$ CL limit $\vert \theta \vert <$ 0.0028. See their Fig. 14 for limit contours in the mass-mixing plane.
|
6
ABBIENDI 2004G give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $−$0.00098 $<\theta <$ 0.00190. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt {s }$ = 91 to 207$~$GeV.
|
7
CHEUNG 2001B limit is derived from bounds on contact interactions in a global electroweak analysis.
|
8
ABREU 2000S give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $\vert \theta \vert <0.0018$. See their Fig.$~$6 for the limit contour in the mass-mixing plane. $\sqrt {\mathit s }$=90 to 189 GeV.
|
9
BARATE 2000I search for deviations in cross section and asymmetries in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ fermions at $\sqrt {\mathit s }$=90 to 183 GeV. Assume $\theta $=0. Bounds in the mass-mixing plane are shown in their Figure$~$18.
|
10
CHAY 2000 also find $-0.0003<\theta <0.0019$. For ${{\mathit g}_{{R}}}$ free, ${\mathit m}_{{{\mathit Z}^{\,'}}}>430$ GeV.
|
11
ERLER 2000 discuss the possibility that a discrepancy between the observed and predicted values of ${{\mathit Q}_{{W}}}({}^{}\mathrm {Cs}$) is due to the exchange of ${{\mathit Z}^{\,'}}$. The data are better described in a certain class of the ${{\mathit Z}^{\,'}}$ models including ${{\mathit Z}}_{\mathit LR}$ and ${{\mathit Z}_{{\chi}}}$.
|
12
CASALBUONI 1999 discuss the discrepancy between the observed and predicted values of ${{\mathit Q}_{{W}}}({}^{}\mathrm {Cs}$). It is shown that the data are better described in a class of models including the ${{\mathit Z}}_{\mathit LR}$ model.
|
13
CZAKON 1999 perform a simultaneous fit to charged and neutral sectors. Assumes manifest left-right symmetric model. Finds $\vert \theta \vert <0.0042$.
|
14
ERLER 1999 give 90$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0009<\theta <0.0017$.
|
15
ERLER 1999 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in $\mathit E_{6}$.
|
16
BARENBOIM 1998 also gives 68$\%$ CL limits on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0005<\theta <0.0033$. Assumes Higgs sector of minimal left-right model.
|
17
CONRAD 1998 limit is from measurements at CCFR, assuming no ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing.
|
18
VILAIN 1994B assume ${\mathit m}_{{{\mathit t}}}$ = 150 GeV and $\theta $=0. See Fig.$~$2 for limit contours in the mass-mixing plane.
|
19
RIZZO 1993 analyses CDF limit on possible two-jet resonances.
|
20
GRIFOLS 1990 limit holds for ${\mathit m}_{{{\mathit \nu}_{{R}}}}{ {}\lesssim{} }~$1 MeV. A specific Higgs sector is assumed. See also GRIFOLS 1990D, RIZZO 1991 .
|
21
BARBIERI 1989B limit holds for ${\mathit m}_{{{\mathit \nu}_{{R}}}}{}\leq{}$10 MeV. Bounds depend on assumed supernova core temperature.
|