Limits for other ${{\mathit Z}^{\,'}}$

INSPIRE   PDGID:
S056ZOT
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\text{none 300 - 3200}$ 95 1
AAD
2023O
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
$\text{none 1800 - 2400}$ 95 2
TUMASYAN
2023AF
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$\text{none 1300 - 3100, 3300 - 3500}$ 95 3
TUMASYAN
2023AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$>3900$ 95 4
TUMASYAN
2023AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
$> 4000$ 95 5
TUMASYAN
2022D
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{none 800 - 3700}$ 95 6
SIRUNYAN
2021X
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$> 2650$ 95 7
AAD
2020AJ
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$> 3900$ 95 8
AAD
2020AM
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 3900$ 95 9
AAD
2020AT
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{none 1200 - 3500}$ 95 10
SIRUNYAN
2020Q
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{none 580 - 3100}$ 95 11
AABOUD
2019AS
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$\text{none 1300 - 3100}$ 95 12
AAD
2019D
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 3800$ 95 13
SIRUNYAN
2019AA
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 3700$ 95 14
SIRUNYAN
2019CP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$, ${{\mathit H}}{{\mathit Z}},{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
$> 1800$ 95 15
SIRUNYAN
2019I
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$\text{none 600 - 2100}$ 95 16
AABOUD
2018AB
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$\text{none 500 - 2830}$ 95 17
AABOUD
2018AI
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$\text{none 300 - 3000}$ 95 18
AABOUD
2018AK
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 1300$ 95 19
AABOUD
2018B
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{none 400 - 3000}$ 95 20
AABOUD
2018BI
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$\text{none 1200 - 2800}$ 95 21
AABOUD
2018F
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 2300$ 95 22
SIRUNYAN
2018ED
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$\text{none 1200 - 2700}$ 95 23
SIRUNYAN
2018P
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$>2900$ 95 24
AABOUD
2017AK
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 1100 - 2600}$ 95 25
AABOUD
2017AO
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$>2300$ 95 26
SIRUNYAN
2017AK
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit H}}{{\mathit Z}}$
$> 2500$ 95 27
SIRUNYAN
2017Q
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$>1190$ 95 28
SIRUNYAN
2017R
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$\text{none 1210 - 2260}$ 95 28
SIRUNYAN
2017R
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
• • We do not use the following data for averages, fits, limits, etc. • •
29
AAD
2023BF
ATLS DM simplified ${{\mathit Z}^{\,'}}$
30
AAD
2023W
ATLS dark Higgs ${{\mathit Z}^{\,'}}$
31
AAD
2023X
ATLS ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$
32
ADACHI
2023B
BEL2 ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$
33
ADACHI
2023F
BEL2 ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$
34
HAYRAPETYAN
2023D
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
35
HAYRAPETYAN
2023G
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
36
LI
2023I
ASTR Steller cooling
37
MANZARI
2023
ASTR DM mediator ${{\mathit Z}^{\,'}}$
38
AAD
2022
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
39
AAD
2022D
ATLS DM mediator ${{\mathit Z}^{\,'}}$
40
ANDREEV
2022
CALO electron beam dump
41
BONET
2022
HPGE ${{\mathit \nu}}$-nucleus scattring
42
COLOMA
2022
RVUE ${{\mathit \nu}}$-nucleus scattering
43
COLOMA
2022A
RVUE ${{\mathit \nu}}-{{\mathit e}}$ scattering
44
CZANK
2022
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit Z}^{\,'}}(\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$)
45
TUMASYAN
2022AA
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$SVJs
46
AAD
2021AQ
ATLS ${{\mathit p}}{{\mathit p}}$, ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
47
AAD
2021AZ
ATLS DM mediator ${{\mathit Z}^{\,'}}$
48
AAD
2021BB
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit A}}{{\mathit H}}$
49
AAD
2021D
ATLS dark Higgs ${{\mathit Z}^{\,'}}$
50
AAD
2021K
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}$
51
BURAS
2021
RVUE leptophilic ${{\mathit Z}^{\,'}}$
52
CADEDDU
2021
RVUE ${{\mathit \nu}}$-nucleus scattering
53
COLARESI
2021
HPGE ${{\mathit \nu}}$-nucleus scattering
54
KRIBS
2021
RVUE ${{\mathit e}}{{\mathit p}}$ scattering
55
TUMASYAN
2021D
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}$
56
AAD
2020AF
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$
57
AAD
2020T
ATLS DM simplified ${{\mathit Z}^{\,'}}$
58
AAD
2020W
ATLS DM simplified ${{\mathit Z}^{\,'}}$
59
AAIJ
2020AL
LHCB ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
60
ADACHI
2020
BEL2 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit Z}^{\,'}}$ , ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}{{\mathit Z}^{\,'}}$
61
SIRUNYAN
2020AI
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
62
SIRUNYAN
2020AQ
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
63
SIRUNYAN
2020M
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
64
AABOUD
2019AJ
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
65
AABOUD
2019D
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
66
AABOUD
2019V
ATLS DM simplified ${{\mathit Z}^{\,'}}$
67
AAD
2019L
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
68
LONG
2019
RVUE Electroweak
69
PANDEY
2019
RVUE neutrino NSI
70
SIRUNYAN
2019AL
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit T}}$ , ${{\mathit T}}$ $\rightarrow$ ${{\mathit H}}{{\mathit t}}$ , ${{\mathit Z}}{{\mathit t}}$ , ${{\mathit W}}{{\mathit b}}$
71
SIRUNYAN
2019AN
CMS DM simplified ${{\mathit Z}^{\,'}}$
72
SIRUNYAN
2019CB
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
73
SIRUNYAN
2019CD
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
74
SIRUNYAN
2019D
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$
75
AABOUD
2018AA
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$
$> 4500$ 95 76
AABOUD
2018CJ
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}},{{\mathit H}}{{\mathit Z}}$, ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
77
AABOUD
2018N
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
78
AAIJ
2018AQ
LHCB ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
79
SIRUNYAN
2018DR
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
80
SIRUNYAN
2018G
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
81
SIRUNYAN
2018I
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$> 1580$ 95 82
AABOUD
2017B
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
83
KHACHATRYAN
2017AX
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \ell}}{{\mathit \ell}}$
84
KHACHATRYAN
2017U
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$> 1700$ 95 85
SIRUNYAN
2017A
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
86
SIRUNYAN
2017AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit A}}$
87
SIRUNYAN
2017T
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
88
SIRUNYAN
2017V
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit T}}{{\mathit t}}$
$\text{none 1100 - 1500}$ 95 89
AABOUD
2016
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
90
AAD
2016L
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit a}}{{\mathit \gamma}}$ , ${{\mathit a}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$\text{none 1500 - 2600}$ 95 91
AAD
2016S
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 1000 - 1100, none 1300 - 1500}$ 95 92
KHACHATRYAN
2016AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$> 2400$ 95 93
KHACHATRYAN
2016E
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
94
AAD
2015AO
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
95
AAD
2015AT
ATLS monotop
96
AAD
2015CD
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{\,'}}$ , ${{\mathit Z}^{\,'}}{{\mathit Z}^{\,'}}$; ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
97
KHACHATRYAN
2015F
CMS monotop
98
KHACHATRYAN
2015O
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
99
AAD
2014AT
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
100
KHACHATRYAN
2014A
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit V}}{{\mathit V}}$
101
MARTINEZ
2014
RVUE Electroweak
$\text{none 500 - 1740}$ 95 102
AAD
2013AQ
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$\text{>1320 or 1000 - 1280}$ 95 103
AAD
2013G
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$>915$ 95 103
AALTONEN
2013A
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 1300$ 95 104
CHATRCHYAN
2013AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 2100$ 95 103
CHATRCHYAN
2013BM
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
105
AAD
2012BV
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
106
AAD
2012K
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
107
AALTONEN
2012AR
CDF Chromophilic
108
AALTONEN
2012N
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit u}}$
$> 835$ 95 109
ABAZOV
2012R
D0 ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
110
CHATRCHYAN
2012AI
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit u}}}$
111
CHATRCHYAN
2012AQ
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 1490$ 95 103
CHATRCHYAN
2012BL
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
112
AALTONEN
2011AD
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
113
AALTONEN
2011AE
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
114
CHATRCHYAN
2011O
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\mathit t}}$
115
AALTONEN
2008D
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
115
AALTONEN
2008Y
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
115
ABAZOV
2008AA
D0 ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
116
ABAZOV
2004A
D0 Repl. by ABAZOV 2008AA
117
BARGER
2003B
COSM Nucleosynthesis; light ${{\mathit \nu}_{{{R}}}}$
118
CHO
2000
RVUE $\mathit E_{6}$-motivated
119
CHO
1998
RVUE $\mathit E_{6}$-motivated
120
ABE
1997G
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit q}}}{{\mathit q}}$
1  AAD 2023O search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
2  TUMASYAN 2023AF search for resonance decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 1. See their Fig. 4 for limits on $\sigma \cdot{}B$.
3  TUMASYAN 2023AP search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 4.8 TeV assuming $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$ and combining ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$, ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$ channels.
4  TUMASYAN 2023AP search for resonances decaying to $ZH$ in $pp$ collisions at $\sqrt{s}=13\,$TeV. The limit quoted above is for heavy-vector-triplet $Z'$ with $g_V=3$. The limit becomes $M_{Z'}>4.8$~TeV assuming $M_{W'}=M_{Z'}$ and combining $W'\to WZ$, $W'\to WH$, $Z'\to WW$, $Z'\to ZH$ channels.
5  TUMASYAN 2022D search for resonances produced through Drell-Yan and vector-boson-fusion processes in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limits on $\sigma \cdot{}B$. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3 produced mainly via Drell-Yan.
6  SIRUNYAN 2021X search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $>$ 3500 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
7  AAD 2020AJ search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes M$_{{{\mathit Z}^{\,'}}}$ $>$ 2200 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig. 6 for limits on $\sigma \cdot{}B$.
8  AAD 2020AM search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for a leptophobic top-color ${{\mathit Z}^{\,'}}$ with ${\Gamma}_{{\mathit Z}^{\,'}}/M_{{{\mathit Z}^{\,'}}}$ = 0.01. The limit becomes M$_{{{\mathit Z}^{\,'}}}$ $>$ 4700 GeV for ${\Gamma}_{{\mathit Z}^{\,'}}/M_{{{\mathit Z}^{\,'}}}$ = 0.03.
9  AAD 2020AT search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $>$ 3500 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig. 14 for limits on $\sigma \cdot{}B$.
10  SIRUNYAN 2020Q search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3.
11  AABOUD 2019AS search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for a top-color ${{\mathit Z}^{\,'}}$ with $\Gamma _{{{\mathit Z}^{\,'}}}/\mathit M_{{{\mathit Z}^{\,'}}}$ = 0.01. Limits are also set on ${{\mathit Z}^{\,'}}$ masses in simplified Dark Matter models.
12  AAD 2019D search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2900 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3800 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3500 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig. 9 for limits on $\sigma \cdot{}B$.
13  SIRUNYAN 2019AA search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for a leptophobic top-color ${{\mathit Z}^{\,'}}$ with $\Gamma _{{{\mathit Z}^{\,'}}}/\mathit M_{{{\mathit Z}^{\,'}}}$ = 0.01.
14  SIRUNYAN 2019CP present a statistical combinations of searches for ${{\mathit Z}^{\,'}}$ decaying to pairs of bosons or leptons in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If we assume ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ = ${{\mathit M}}_{{{\mathit W}^{\,'}}}$, the limit becomes ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $>$ 4500 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $>$ 5000 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Figs. 2 and 3 for limits on $\sigma \cdot{}B$.
15  SIRUNYAN 2019I search for resonances decaying to ${{\mathit Z}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2800 GeV if we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$.
16  AABOUD 2018AB search for resonances decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a leptophobic ${{\mathit Z}^{\,'}}$ with SM-like couplings to quarks. See their Fig. 6 for limits on $\sigma \cdot{}B$. Additional limits on a ${{\mathit Z}^{\,'}}$ axial-vector mediator in a simplified dark-matter model are shown in Fig. 7.
17  AABOUD 2018AI search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2650 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2930 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig. 5 for limits on $\sigma \cdot{}\mathit B$.
18  AABOUD 2018AK search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ =1 3 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2750 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
19  AABOUD 2018B search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 1. See their Fig.11 for limits on $\sigma \cdot{}{{\mathit B}}$.
20  AABOUD 2018BI search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for a top-color assisted TC ${{\mathit Z}^{\,'}}$ with $\Gamma _{{{\mathit Z}^{\,'}}}/\mathit M_{{{\mathit Z}^{\,'}}}$ = 0.01. The limits for wider resonances are available. See their Fig. 14 for limits on $\sigma \cdot{}{{\mathit B}}$.
21  AABOUD 2018F search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2200 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3500 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3100 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.5 for limits on $\sigma \cdot{}{{\mathit B}}$.
22  SIRUNYAN 2018ED search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2900 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively.
23  SIRUNYAN 2018P give this limit for a heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If they assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases to $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3800 GeV.
24  AABOUD 2017AK search for a new resonance decaying to dijets in $pp$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a leptophobic ${{\mathit Z}^{\,'}}$ boson having axial-vector coupling strength with quarks ${{\mathit g}_{{{q}}}}$ = 0.2. The limit is 2100 GeV if ${{\mathit g}_{{{q}}}}$ = 0.1.
25  AABOUD 2017AO search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a ${{\mathit Z}^{\,'}}$ in the heavy-vector-triplet model with ${{\mathit g}_{{{V}}}}$ = 3. See their Fig.4 for limits on $\sigma \cdot{}{{\mathit B}}$.
26  SIRUNYAN 2017AK search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ or ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 and 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2200 GeV for ${{\mathit g}_{{{V}}}}$ =1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2400 GeV for both ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1. See their Fig.1 and 2 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
27  SIRUNYAN 2017Q search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a resonance with relative width $\Gamma _{{{\mathit Z}^{\,'}}}$ $/$ $\mathit M_{{{\mathit Z}^{\,'}}}$ = 0.01. Limits for wider resonances are available. See their Fig.6 for limits on $\sigma \cdot{}\mathit B$.
28  SIRUNYAN 2017R search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. Mass regions $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 1150 GeV and 1250 GeV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 1670 GeV are excluded for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the excluded mass regions are 1000 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 2500 GeV and 2760 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 3300 GeV for ${{\mathit g}_{{{V}}}}$ = 3; 1000 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 2430 GeV and 2810 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 3130 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig.5 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
29  AAD 2023BF search for a Dark Matter (DM) simplified ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9(c) for limits on $\sigma \cdot{}B$ as a function of $\mathit M_{{{\mathit Z}^{\,'}}}$.
30  AAD 2023W set limits on a dark Higgs model with a spin-1 mediator ${{\mathit Z}^{\,'}}$ and a dark Higgs ${{\mathit s}}$. Dark Higgs ${{\mathit s}}$ is assumed to decay into ${{\mathit W}}{{\mathit W}}$. See their Fig. 9 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{s}}}}$ plane.
31  AAD 2023X set limits on ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$ of ${{\mathit Z}^{\,'}}$ using four-muon final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 7 for limits in mass-coupling plane.
32  ADACHI 2023B search for ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and decaying invisibly in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = 10.58 GeV. See their Fig. 3 and Fig. 4 for limits in mass-coupling plane.
33  ADACHI 2023F search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ events in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = 10.58 GeV. See their Fig. 3 for limits on $\sigma \cdot{}B$.
34  HAYRAPETYAN 2023D search for ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ resonance produced in association with one or more ${{\mathit b}}$-jets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limits in the mass-coupling plane of the ${{\mathit B}_{{{3}}}}-{{\mathit L}_{{{2}}}}{{\mathit Z}^{\,'}}$ model.
35  HAYRAPETYAN 2023G search for spin-0 and spin-1 resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in $pp$ collisions at $\sqrt {s }$ = 13 TeV in the mass ranges of $1.1 - 2.6$ GeV and $4.2 - 7.9$ GeV. See their Fig. 5 for limits on $\sigma \cdot{}B$.
36  LI 2023I limits on light ${{\mathit Z}^{\,'}}$ couplings are dervied from the steller cooling bounds in the mass range of $10^{4} - 10^{6}$ eV. See their Fig. 4 for limits on dark photon, ${{\mathit B}}-{{\mathit L}}$, ${{\mathit L}_{{{\mu}}}}-{{\mathit L}_{{{\tau}}}}$, and ${{\mathit L}_{{{e}}}}-{{\mathit L}}_{{{\mathit \mu}}({{\mathit \tau}})}$ models.
37  MANZARI 2023 study supernova cooling induced by the emission of light dark fermions ${{\mathit \chi}}$ assumed to couple with leptons via a new massive vector boson ${{\mathit Z}^{\,'}}$. See their Figs. 4 and 5 for limits in mass-coupling plane.
38  AAD 2022 search for ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}^{\,'}}$ productions in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into ${{\mathit b}}{{\overline{\mathit b}}}$. See their Fig.4 for limits on $\sigma \cdot{}B$.
39  AAD 2022D search for DM mediator ${{\mathit Z}^{\,'}}$ produced in association with a ${{\mathit Z}}$ boson in $pp$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}$. See their Fig. 4 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−\mathit M_{{{\mathit \chi}}}$ plane.
40  ANDREEV 2022 search for missing energy in CERN NA64-e experiment. See their Fig. 7 for limits on couplings of $\mathit U(1)$ gauge ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}{{\mathit Z}^{\,'}}$ models, in the mass range of 1 MeV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 600 MeV with the kinetic ${{\mathit Z}^{\,'}}−{{\mathit \gamma}}$ mixing being determined by ${{\mathit \mu}}$ and ${{\mathit \tau}}$ loops.
41  BONET 2022 obtain limits on ${{\mathit Z}^{\,'}}$ coupling from ${{\mathit \nu}}$-nucleus scattering data collected by the CONUS experiment at the nuclear power plant in Brokdorf. See their Fig. 5 for limits in mass-coupling plane.
42  COLOMA 2022 set limits on ${{\mathit Z}^{\,'}}$ coupling from ${{\mathit \nu}}$-nucleus and ${{\mathit \nu}}-{{\mathit e}}$ scattering data collected by a ${}^{}\mathrm {Ge}$ detector at the Dresden-II power reactor and the COHERENT experiment. See their Fig. 6 for limits in mass-coupling plane in the mass range of 1 keV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 5 GeV.
43  COLOMA 2022A use Borexino Phase-II spectral data to constrain ${{\mathit Z}^{\,'}}$ couplings. See their Fig. 5 for limits in mass-coupling plane in the mass range of 10 keV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 100 MeV.
44  CZANK 2022 search for ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at and near ${{\mathit \Upsilon}}$ resonances. ${{\mathit Z}^{\,'}}$ is assumed to decay into ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$. See their Fig. 8 for limits on ${{\mathit Z}^{\,'}}{{\mathit \mu}}{{\mathit \mu}}$ couplings.
45  TUMASYAN 2022AA search for ${{\mathit Z}^{\,'}}$ production in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into two "semivisible" jets (SVJ), i.e., collimated mixtures of visible and invisible particles. See their Fig. 7 and 8 for limits on $\sigma \cdot{}B$.
46  AAD 2021AQ limits are for a $\mathit B~−~L$ gauge boson model derived from their measurements on four-lepton differential cross sections. See their Fig. 13 for exclusion limits on the $\mathit B~−~L$ breaking Higgs boson mass.
47  AAD 2021AZ search for DM mediator ${{\mathit Z}^{\,'}}$ produced in association with a SM Higgs boson in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}$. See their Fig.7 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{\chi}}}}$ plane.
48  AAD 2021BB search for ${{\mathit Z}^{\,'}}$ productions in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into a SM Higgs boson ${{\mathit H}}$ and an invisible particle ${{\mathit A}}$. See their Fig.7 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{A}}}}$ plane.
49  AAD 2021D set limits on a dark Higgs model with a spin-1 mediator ${{\mathit Z}^{\,'}}$ and a scalar dark Higgs boson ${{\mathit s}}$. Dark Higgs ${{\mathit s}}$ is assumed to decay into ${{\mathit W}}{{\mathit W}}$ or ${{\mathit Z}}{{\mathit Z}}$. See their Fig.4 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{s}}}}$ plane.
50  AAD 2021K search for ${{\mathit \gamma}}$ + $\not E_T$ events in ${{\mathit p}}{{\mathit p}}$ collision at $\sqrt {s }$ = 13 TeV. See their Fig. 5 for limits on ${{\mathit Z}^{\,'}}$ particle invisibly decaying to ${{\mathit \chi}}{{\mathit \chi}}$.
51  BURAS 2021 performed global fit to leptophilic ${{\mathit Z}^{\,'}}$ models using a large number of observables.
52  CADEDDU 2021 obtain limits on ${{\mathit Z}^{\,'}}$ coupling ${{\mathit g}}_{{{\mathit Z}^{\,'}}}$ from coherent ${{\mathit \nu}}$-nucleus scattering data collected by COHERENT experiment. For limits in the ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit g}}_{{{\mathit Z}^{\,'}}}$ plane, see their Figures 3 and 4 for the universal ${{\mathit Z}^{\,'}}$ model and Figures 5 and 6 for the ${{\mathit B}}−{{\mathit L}}$ model.
53  COLARESI 2021 obtain limits on ${{\mathit Z}^{\,'}}$ coupling from coherent ${{\mathit \nu}}$-nucleus scattering data collected by a ${}^{}\mathrm {Ge}$ detector at the Dresden-II power reactor. See their Fig.7 for limits in mass-coupling plane.
54  KRIBS 2021 set decay-agnostic limits on kinetic mixing parameter between U(1)$_{Y}$ field and new heavy abelian vector boson (dark photon) field using the HERA ${{\mathit e}}{{\mathit p}}$ collision data. See their Fig. 3 for limits in mass-mixing plane.
55  TUMASYAN 2021D search for energetic jets + $\not E_T$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into a pair of invisible particles ${{\mathit \chi}}{{\mathit \chi}}$. See their Fig. 7 for limits on signal strength in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{\chi}}}}$ plane, and Fig. 8 for limits on signal strength in quark and dark matter coupling vs mediator mass.
56  AAD 2020AF search for resonances decaying to ${{\mathit H}}{{\mathit \gamma}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 1c for limits on $\sigma \cdot{}B$ for the mass range 0.7 $<$ ${\mathit m}_{{{\mathit Z}^{\,'}}}$ $<$ 4 TeV.
57  AAD 2020T search for Dark Matter mediator ${{\mathit Z}^{\,'}}$ decaying invisibly or decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 5 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−{{\mathit g}_{{{q}}}}$ plane from the inclusive category. See their Fig. 7(a) for limits on the product of the cross section, acceptance, ${{\mathit b}}$-tagging efficiency, and branching fraction from the 2 ${{\mathit b}}$-tag category.
58  AAD 2020W search for a Dark Matter (DM) simplified model ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 5 for limits on ${{\mathit Z}^{\,'}}$ production cross section.
59  AAIJ 2020AL search for spin-0 and spin-1 resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the mass regions M$_{{{\mathit Z}^{\,'}}}$ $<$ 60 GeV, with non-negligible widths considered above 20 GeV. See their Figs. 7, 8, and 9 for limits on $\sigma \cdot{}B$.
60  ADACHI 2020 search for production of ${{\mathit Z}^{\,'}}$ in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions. The ${{\mathit Z}^{\,'}}$ is assume to decay invisibly. See their Fig. 3 and Fig. 5 for limits on ${{\mathit Z}^{\,'}}$ coupling and ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}{{\mathit Z}^{\,'}}{)}$.
61  SIRUNYAN 2020AI search for broad resonances decaying into dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 11 for exclusion limits in mass-coupling plane.
62  SIRUNYAN 2020AQ search for a narrow resonance lighter than 200 GeV decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 3 for limits on ${{\mathit Z}^{\,'}}$ kinetic mixing coefficient.
63  SIRUNYAN 2020M search for a narrow resonance with a mass between 350 and 700 GeV in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig.3 for exclusion limits in mass-coupling plane.
64  AABOUD 2019AJ search in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for a new resonance decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ and produced in association with a high $p_T$ photon. For a leptophobic axial-vector ${{\mathit Z}^{\,'}}$ in the mass region 250 GeV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 950 GeV, the ${{\mathit Z}^{\,'}}$ coupling with quarks ${{\mathit g}_{{{q}}}}$ is constrained below 0.18. See their Fig.2 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−{{\mathit g}_{{{q}}}}$ plane.
65  AABOUD 2019D search in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for a new resonance decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ and produced in association with a high-$p_T$ photon or jet. For a leptophobic axial-vector ${{\mathit Z}^{\,'}}$ in the mass region 100 GeV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 220 GeV, the ${{\mathit Z}^{\,'}}$ coupling with quarks ${{\mathit g}_{{{q}}}}$ is constrained below 0.23. See their Fig. 6 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−{{\mathit g}_{{{q}}}}$ plane.
66  AABOUD 2019V search for Dark Matter simplified ${{\mathit Z}^{\,'}}$ decaying invisibly or decaying to fermion pair in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
67  AAD 2019L search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 4 for limits in the heavy vector triplet model couplings.
68  LONG 2019 uses the weak charge data of Cesium and proton to constrain mass of ${{\mathit Z}^{\,'}}$ in the 3-3-1 models.
69  PANDEY 2019 obtain limits on ${{\mathit Z}^{\,'}}$ induced neutrino non-standard interaction (NSI) parameter $\epsilon $ from LHC and IceCube data. See their Fig.2 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−\epsilon $ plane, where $\epsilon $ = ${{\mathit g}_{{{q}}}}{{\mathit g}}_{{{\mathit \nu}}}$ v${}^{2}$ $/$ (2 ${{\mathit M}}{}^{2}_{{{\mathit Z}^{\,'}}}$).
70  SIRUNYAN 2019AL search for a new resonance decaying to a top quark and a heavy vector-like top partner in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limits on ${{\mathit Z}^{\,'}}$ production cross section.
71  SIRUNYAN 2019AN search for a Dark Matter (DM) simplified model ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit H}}$ DM DM in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 7 for limits on the signal strength modifiers.
72  SIRUNYAN 2019CB search in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for a new resonance decaying to ${{\mathit q}}{{\overline{\mathit q}}}$. For a leptophobic ${{\mathit Z}^{\,'}}$ in the mass region $50 - 300$ GeV, the ${{\mathit Z}^{\,'}}$ coupling with quarks ${{\mathit g}_{{{q}}}^{\,'}}$ is constrained below 0.2. See their Figs. 4 and 5 for limits on ${{\mathit g}_{{{q}}}^{\,'}}$ in the mass range 50 $<$ ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $<$ 450 GeV.
73  SIRUNYAN 2019CD search in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=13 TeV for a leptophobic ${{\mathit Z}^{\,'}}$ produced in association of high $p_T$ ISR photon and decaying to ${{\mathit q}}{{\overline{\mathit q}}}$. See their Fig. 2 for limits on the ${{\mathit Z}^{\,'}}$ coupling strength ${{\mathit g}_{{{q}}}^{\,'}}$ to ${{\mathit q}}{{\overline{\mathit q}}}$ in the mass range between 10 and 125 GeV.
74  SIRUNYAN 2019D search for a narrow neutral vector resonance decaying to ${{\mathit H}}{{\mathit \gamma}}$. See their Fig. 3 for exclusion limit in $\mathit M_{{{\mathit Z}^{\,'}}}−\sigma \cdot{}\mathit B$ plane. Upper limits on the production of ${{\mathit H}}{{\mathit \gamma}}$ resonances are set as a function of the resonance mass in the range of $720 - 3250$ GeV.
75  AABOUD 2018AA search for a narrow neutral vector boson decaying to ${{\mathit H}}{{\mathit \gamma}}$. See their Fig. 10 for the exclusion limit in M$_{{{\mathit Z}^{\,'}}}$ $−$ $\sigma $B plane.
76  AABOUD 2018CJ search for heavy-vector-triplet $Z'$ in $pp$ collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for model with $g_V=3$ assuming $M_{Z'}=M_{W'}$. The limit becomes $M_{Z'}>5500$ GeV for model with $g_V=1$.
77  AABOUD 2018N search for a narrow resonance decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV using trigger level analysis to improve the low mass region sensitivity. See their Fig. 5 for limits in the mass-coupling plane in the ${{\mathit Z}^{\,'}}$ mass range $450 - 1800$ GeV.
78  AAIJ 2018AQ search for spin-0 and spin-1 resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 and 8 TeV in the mass region near 10 GeV. See their Figs. 4 and 5 for limits on $\sigma \cdot{}\mathit B$.
79  SIRUNYAN 2018DR searches for ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ resonances produced in association with ${{\mathit b}}$-jets in the ${{\mathit p}}{{\mathit p}}$ collision data with $\sqrt {s }$ = 8 TeV and 13 TeV. An excess of events near ${\mathit m}_{\mathrm {{{\mathit \mu}} {{\mathit \mu}}}}$ = 28 GeV is observed in the 8 TeV data. See their Fig. 3 for the measured fiducial signal cross sections at $\sqrt {s }$ = 8 TeV and the 95$\%$ CL upper limits at $\sqrt {s }$ = 13 TeV.
80  SIRUNYAN 2018G search for a new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the mass range $50 - 300$ GeV. See their Fig.7 for limits in the mass-coupling plane.
81  SIRUNYAN 2018I search for a narrow resonance decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV using dedicated b-tagged dijet triggers to improve the sensitivity in the low mass region. See their Fig. 3 for limits on $\sigma \cdot{}{{\mathit B}}$ in the ${{\mathit Z}^{\,'}}$ mass range $325 - 1200$ GeV.
82  AABOUD 2017B search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit c}}{{\overline{\mathit c}}}$; ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit \nu}}{{\overline{\mathit \nu}}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit Z}^{\,'}}}>$ 1490 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ = ${{\mathit M}}_{{{\mathit W}^{\,'}}}$, the limit increases ${{\mathit M}}_{{{\mathit Z}^{\,'}}}>$ 2310 GeV and ${{\mathit M}}_{{{\mathit Z}^{\,'}}}>$ 1730 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.3 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
83  KHACHATRYAN 2017AX search for lepto-phobic resonances decaying to four leptons in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
84  KHACHATRYAN 2017U search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$; ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit \nu}}{{\overline{\mathit \nu}}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit on the heavy-vector-triplet model is $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2 TeV for ${{\mathit g}_{{{V}}}}$ = 3, in which constraints from the ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$; ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$) are combined. See their Fig.3 and Fig.4 for limits on $\sigma \cdot{}\mathit B$.
85  SIRUNYAN 2017A search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ with ${{\mathit W}}$ ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 1600 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2400 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2300 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.6 for limits on $\sigma \cdot{}\mathit B$.
86  SIRUNYAN 2017AP search for resonances decaying into a SM-like Higgs scalar ${{\mathit H}}$ and a light pseudo scalar ${{\mathit A}}$. ${{\mathit A}}$ is assumed to decay invisibly. See their Fig.9 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
87  SIRUNYAN 2017T search for a new resonance decaying to dijets in $pp$ collisions at $\sqrt {s }$ = 13 TeV in the mass range $100 - 300$ GeV. See their Fig.3 for limits in the mass-coupling plane.
88  SIRUNYAN 2017V search for a new resonance decaying to a top quark and a heavy vector-like top partner ${{\mathit T}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their table 5 for limits on the ${{\mathit Z}^{\,'}}$ production cross section for various values of $\mathit M_{{{\mathit Z}^{\,'}}}$ and $\mathit M_{T}$ in the range of $\mathit M_{{{\mathit Z}^{\,'}}}$ = $1500 - 2500$ GeV and $\mathit M_{T}$ = $700 - 1500$ GeV.
89  AABOUD 2016 search for a narrow resonance decaying into ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a leptophobic ${{\mathit Z}^{\,'}}$ with SM-like couplings to quarks. See their Fig.6 for limits on $\sigma \cdot{}\mathit B$.
90  AAD 2016L search for ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit a}}{{\mathit \gamma}}$ , ${{\mathit a}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. See their Table 6 for limits on $\sigma \cdot{}\mathit B$.
91  AAD 2016S search for a new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a leptophobic ${{\mathit Z}^{\,'}}$ having coupling strength with quark ${{\mathit g}_{{{q}}}}$ = 0.3 and is taken from their Figure 3.
92  KHACHATRYAN 2016AP search for a resonance decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. Both ${{\mathit H}}$ and ${{\mathit Z}}$ are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3.
93  KHACHATRYAN 2016E search for a leptophobic top-color ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The quoted limit assumes that ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.012. Also ${\mathit m}_{{{\mathit Z}^{\,'}}}$ $<$ 2.9 TeV is excluded for wider topcolor ${{\mathit Z}^{\,'}}$ with ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.1.
94  AAD 2015AO search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. See Fig. 11 for limit on $\sigma \mathit B$.
95  AAD 2015AT search for monotop production plus large missing $\mathit E_{T}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV and give constraints on a ${{\mathit Z}^{\,'}}$ model having ${{\mathit Z}^{\,'}}{{\mathit u}}{{\overline{\mathit t}}}$ coupling. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly. See their Fig. 6 for limits on $\sigma \cdot{}\mathit B$.
96  AAD 2015CD search for decays of Higgs bosons to 4 ${{\mathit \ell}}$ states via ${{\mathit Z}^{\,'}}$ bosons, ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ or ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}^{\,'}}{{\mathit Z}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$. See Fig. 5 for the limit on the signal strength of the ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ process and Fig. 16 for the limit on ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}^{\,'}}{{\mathit Z}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$.
97  KHACHATRYAN 2015F search for monotop production plus large missing $\mathit E_{T}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV and give constraints on a ${{\mathit Z}^{\,'}}$ model having ${{\mathit Z}^{\,'}}{{\mathit u}}{{\overline{\mathit t}}}$ coupling. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly. See Fig. 3 for limits on $\sigma \mathit B$.
98  KHACHATRYAN 2015O search for narrow ${{\mathit Z}^{\,'}}$ resonance decaying to ${{\mathit Z}}{{\mathit H}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. See their Fig. 6 for limit on $\sigma \mathit B$.
99  AAD 2014AT search for a narrow neutral vector boson decaying to ${{\mathit Z}}{{\mathit \gamma}}$. See their Fig. 3b for the exclusion limit in ${\mathit m}_{{{\mathit Z}^{\,'}}}−\sigma \mathit B$ plane.
100  KHACHATRYAN 2014A search for new resonance in the ${{\mathit W}}{{\mathit W}}$ (${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$) and the ${{\mathit Z}}{{\mathit Z}}$ (${{\mathit \ell}}{{\mathit \ell}}{{\mathit q}}{{\overline{\mathit q}}}$) channels using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=8 TeV. See their Fig.13 for the exclusion limit on the number of events in the mass-width plane.
101  MARTINEZ 2014 use various electroweak data to constrain the ${{\mathit Z}^{\,'}}$ boson in the 3-3-1 models.
102  AAD 2013AQ search for a leptophobic top-color ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. The quoted limit assumes that ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.012.
103  CHATRCHYAN 2013BM search for top-color ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=8 TeV. The quoted limit is for ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.012.
104  CHATRCHYAN 2013AP search for top-color leptophobic ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. The quoted limit is for ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.012.
105  AAD 2012BV search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. See their Fig. 7 for limit on $\sigma \cdot{}$B.
106  AAD 2012K search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. See their Fig. 5 for limit on $\sigma \cdot{}$B.
107  AALTONEN 2012AR search for chromophilic ${{\mathit Z}^{\,'}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV. See their Fig. 5 for limit on $\sigma \cdot{}$B.
108  AALTONEN 2012N search for ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit t}}{{\mathit Z}^{\,'}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit u}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot{}$B.
109  ABAZOV 2012R search for top-color ${{\mathit Z}^{\,'}}$ boson decaying exclusively to ${{\mathit t}}{{\overline{\mathit t}}}$. The quoted limit is for ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$= 0.012.
110  CHATRCHYAN 2012AI search for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\mathit t}}$ events and give constraints on a ${{\mathit Z}^{\,'}}$ model having ${{\mathit Z}^{\,'}}{{\overline{\mathit u}}}{{\mathit t}}$ coupling. See their Fig. 4 for the limit in mass-coupling plane.
111  Search for resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig. 6 for limit on $\sigma \cdot{}$B.
112  Search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig. 4 for limit on $\sigma \cdot{}$B.
113  Search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig. 3 for limit on $\sigma \cdot{}$B.
114  CHATRCHYAN 2011O search for same-sign top production in ${{\mathit p}}{{\mathit p}}$ collisions induced by a hypothetical FCNC ${{\mathit Z}^{\,'}}$ at $\sqrt {s }$ = 7 TeV. See their Fig. 3 for limit in mass-coupling plane.
115  Search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig.$~$3 for limit on $\sigma \cdot{}$B.
116  Search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig.$~$2 for limit on $\sigma \cdot{}$B.
117  BARGER 2003B use the nucleosynthesis bound on the effective number of light neutrino $\delta \mathit N_{{{\mathit \nu}}}$. See their Figs.$~4 - 5$ for limits in general $\mathit E_{6}$ motivated models.
118  CHO 2000 use various electroweak data to constrain ${{\mathit Z}^{\,'}}$ models assuming ${\mathit m}_{{{\mathit H}}}$=100 GeV. See Fig.$~$2 for limits in general $\mathit E_{6}$-motivated models.
119  CHO 1998 study constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments, assuming no ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing.
120  Search for ${{\mathit Z}^{\,'}}$ decaying to dijets at $\sqrt {\mathit s }=1.8$ TeV. For ${{\mathit Z}^{\,'}}$ with electromagnetic strength coupling, no bound is obtained.
References