Limits for ${{\mathit Z}_{{{\psi}}}}$

INSPIRE   PDGID:
S056ZPS
${{\mathit Z}_{{{\psi}}}}$ is the extra neutral boson in E$_{6}$ $\rightarrow$ SO(10) ${\times }$ U(1)$_{{{\mathit \psi}}}$. ${{\mathit g}_{{{\psi}}}}$ = ${{\mathit e}}$/cos $\theta _{\mathit W}$ is assumed unless otherwise stated. We list limits with the assumption $\rho ~=~$1 but with no further constraints on the Higgs sector. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{ > 4560}$ OUR LIMIT
$\bf{> 4560}$ 95 1
SIRUNYAN
2021N
CMS ${{\mathit p}}{{\mathit p}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$\text{none 250 - 4500}$ 95 2
AAD
2019L
ATLS ${{\mathit p}}{{\mathit p}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$\text{none 200 - 3900}$ 95 3
SIRUNYAN
2018BB
CMS ${{\mathit p}}{{\mathit p}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 3800$ 95 4
AABOUD
2017AT
ATLS ${{\mathit p}}{{\mathit p}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 2820$ 95 5
KHACHATRYAN
2017T
CMS ${{\mathit p}}{{\mathit p}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$>1100$ 95 6
CHATRCHYAN
2012O
CMS ${{\mathit p}}{{\mathit p}}$, ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$
• • We do not use the following data for averages, fits, limits, etc. • •
7
BOBOVNIKOV
2018
RVUE ${{\mathit p}}{{\mathit p}}$, ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$
$> 2740$ 95 8
AABOUD
2016U
ATLS ${{\mathit p}}{{\mathit p}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$>2570$ 95 9
KHACHATRYAN
2015AE
CMS ${{\mathit p}}{{\mathit p}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 2510$ 95 10
AAD
2014V
ATLS ${{\mathit p}}{{\mathit p}}$, ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 2260$ 95 11
CHATRCHYAN
2013AF
CMS ${{\mathit p}}{{\mathit p}}$, ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 1790$ 95 12
AAD
2012CC
ATLS ${{\mathit p}}{{\mathit p}}$, ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$>2000$ 95 13
CHATRCHYAN
2012M
CMS Repl. by CHATRCHYAN 2013AF
$> 917$ 95 14
AALTONEN
2011I
CDF ${{\mathit p}}{{\overline{\mathit p}}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 891$ 95 15
ABAZOV
2011A
D0 ${{\mathit p}}{{\overline{\mathit p}}}$, ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$> 476$ 95 16
DEL-AGUILA
2010
RVUE Electroweak
$> 851$ 95 15
AALTONEN
2009T
CDF ${{\mathit p}}{{\overline{\mathit p}}}$, ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$> 878$ 95 17
AALTONEN
2009V
CDF Repl. by AALTONEN 2011I
$> 147$ 95 18
ERLER
2009
RVUE Electroweak
$> 822$ 95 15
AALTONEN
2007H
CDF Repl. by AALTONEN 2009T
$> 410$ 95
SCHAEL
2007A
ALEP ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$> 475$ 95 19
ABDALLAH
2006C
DLPH ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$> 725$ 15
ABULENCIA
2006L
CDF Repl. by AALTONEN 2007H
$> 675$ 95 20
ABULENCIA
2005A
CDF Repl. by AALTONEN 2011I and AALTONEN 2009T
$>366$ 95 21
ABBIENDI
2004G
OPAL ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$>600$ 22
BARGER
2003B
COSM Nucleosynthesis; light ${{\mathit \nu}_{{{R}}}}$
$>350$ 95 23
ABREU
2000S
DLPH ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$>294$ 95 24
BARATE
2000I
ALEP Repl. by SCHAEL 2007A
$>137$ 95 25
CHO
2000
RVUE Electroweak
$>146$ 95 26
ERLER
1999
RVUE Electroweak
$>54$ 95 27
CONRAD
1998
RVUE ${{\mathit \nu}_{{{\mu}}}}{{\mathit N}}$ scattering
$>590$ 95 28
ABE
1997S
CDF ${{\mathit p}}{{\overline{\mathit p}}}$; ${{\mathit Z}_{{{\psi}}}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$>135$ 95 29
VILAIN
1994B
CHM2 ${{\mathit \nu}_{{{\mu}}}}$ ${{\mathit e}}$ $\rightarrow$ ${{\mathit \nu}_{{{\mu}}}}{{\mathit e}}$; ${{\overline{\mathit \nu}}_{{{\mu}}}}$ ${{\mathit e}}$ $\rightarrow$ ${{\overline{\mathit \nu}}_{{{\mu}}}}{{\mathit e}}$
$>105$ 90 30
ABE
1990F
VNS ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$\text{[> 160]}$ 31
GONZALEZ-GARC..
1990D
COSM Nucleosynthesis; light ${{\mathit \nu}_{{{R}}}}$
$\text{[> 2000]}$ 32
GRIFOLS
1990D
ASTR SN 1987A; light ${{\mathit \nu}_{{{R}}}}$
1  SIRUNYAN 2021N search for resonance decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
2  AAD 2019L search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
3  SIRUNYAN 2018BB search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
4  AABOUD 2017AT search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
5  KHACHATRYAN 2017T search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8, 13 TeV.
6  CHATRCHYAN 2012O search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
7  BOBOVNIKOV 2018 use the ATLAS limits on $\sigma $( ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit Z}^{\,'}})\cdot{}$B( ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$) to constrain the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing parameter $\xi $. See their Fig. 10 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−\xi $ plane.
8  AABOUD 2016U search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
9  KHACHATRYAN 2015AE search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
10  AAD 2014V search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
11  CHATRCHYAN 2013AF search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV and 8 TeV.
12  AAD 2012CC search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
13  CHATRCHYAN 2012M search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
14  AALTONEN 2011I search for resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
15  ABAZOV 2011A, AALTONEN 2009T, AALTONEN 2007H, and ABULENCIA 2006L search for resonances decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96$~$TeV.
16  DEL-AGUILA 2010 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0019<\theta <$ 0.0007.
17  AALTONEN 2009V search for resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96$~$TeV.
18  ERLER 2009 give 95$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0018<\theta <$ 0.0009.
19  ABDALLAH 2006C give 95$\%$ CL limit $\vert \theta \vert <$ 0.0027. See their Fig. 14 for limit contours in the mass-mixing plane.
20  ABULENCIA 2005A search for resonances decaying to electron or muon pairs in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV.
21  ABBIENDI 2004G give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $−$0.00129 $<\theta <$ 0.00258. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt {s }$ = 91 to 207$~$GeV.
22  BARGER 2003B limit is from the nucleosynthesis bound on the effective number of light neutrino $\delta \mathit N_{{{\mathit \nu}}}<$1. The quark-hadron transition temperature $\mathit T_{\mathit c}$=150 MeV is assumed. The limit with $\mathit T_{\mathit c}$=400 MeV is $>$1100 GeV.
23  ABREU 2000S give 95$\%$ CL limit on ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $\vert \theta \vert <0.0018$. See their Fig.$~$6 for the limit contour in the mass-mixing plane. $\sqrt {\mathit s }$=90 to 189 GeV.
24  BARATE 2000I search for deviations in cross section and asymmetries in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ fermions at $\sqrt {\mathit s }$=90 to 183 GeV. Assume $\theta $=0. Bounds in the mass-mixing plane are shown in their Figure$~$18.
25  CHO 2000 use various electroweak data to constrain ${{\mathit Z}^{\,'}}$ models assuming ${\mathit m}_{{{\mathit H}}}$=100 GeV. See Fig.$~$3 for limits in the mass-mixing plane.
26  ERLER 1999 give 90$\%$ CL limit on the ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing $-0.0013<\theta <0.0024$.
27  CONRAD 1998 limit is from measurements at CCFR, assuming no ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing.
28  ABE 1997S find $\sigma\mathrm {({{\mathit Z}^{\,'}})}{\times }B({{\mathit e}^{+}}{{\mathit e}^{-}},{{\mathit \mu}^{+}}{{\mathit \mu}^{-}})<40~$fb for ${\mathit m}_{{{\mathit Z}^{\,'}}}>600$ GeV at $\sqrt {\mathit s }$= 1.8 TeV.
29  VILAIN 1994B assume ${\mathit m}_{{{\mathit t}}}$ = 150 GeV and $\theta $=0. See Fig.$~$2 for limit contours in the mass-mixing plane.
30  ABE 1990F use data for $\mathit R$, $\mathit R_{{{\mathit \ell}} {{\mathit \ell}}}$, and $\mathit A_{{{\mathit \ell}} {{\mathit \ell}}}$. ABE 1990F fix ${\mathit m}_{{{\mathit W}}}$ = $80.49$ $\pm0.43$ $\pm0.24$ GeV and ${\mathit m}_{{{\mathit Z}}}$ = $91.13$ $\pm0.03$ GeV.
31  Assumes the nucleosynthesis bound on the effective number of light neutrinos ($\delta \mathit N_{{{\mathit \nu}}}$ $<~$1) and that ${{\mathit \nu}_{{{R}}}}$ is light (${ {}\lesssim{} }~$1 MeV).
32  GRIFOLS 1990D limit holds for ${\mathit m}_{{{\mathit \nu}_{{{R}}}}}{ {}\lesssim{} }~$1 MeV. See also RIZZO 1991.
References