• • • We do not use the following data for averages, fits, limits, etc. • • • |
|
|
1 |
|
RVUE |
|
|
2 |
|
CMS |
|
|
3 |
|
ALEP |
|
|
4 |
|
L3 |
|
|
5 |
|
OPAL |
|
|
6 |
|
DLPH |
|
|
7 |
|
L3 |
|
|
8 |
|
OPAL |
$<1.1 \times 10^{-4}$ |
95 |
9 |
|
OPAL |
$<9 \times 10^{-5}$ |
95 |
9 |
|
OPAL |
$<1.1 \times 10^{-4}$ |
95 |
9 |
|
OPAL |
$<2.8 \times 10^{-4}$ |
95 |
10 |
|
L3 |
$<2.3 \times 10^{-4}$ |
95 |
10 |
|
L3 |
$<4.7 \times 10^{-4}$ |
95 |
11 |
|
L3 |
$<8 \times 10^{-4}$ |
95 |
12 |
|
OPAL |
1
RAINBOLT 2019 limits are from B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ ). See their Figs. 5 and 6 for limits in mass-coupling plane.
|
2
SIRUNYAN 2019AZ search for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit X}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 5 for limits on ${\mathit \sigma (}$ ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit X}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}\cdot{}$B( ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ).
|
3
BARATE 1998U obtain limits on B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit X}^{0}}$ )B( ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit \ell}}{{\overline{\mathit \ell}}}$ , ${{\mathit q}}{{\overline{\mathit q}}}$ , ${{\mathit g}}{{\mathit g}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ ). See their Fig.$~$17.
|
4
See Fig.$~$4 of ACCIARRI 1997Q for the upper limit on B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit X}^{0}}$ ; $\mathit E_{{{\mathit \gamma}}}>\mathit E_{{\mathrm {min}}}$) as a function of $\mathit E_{{\mathrm {min}}}$.
|
5
ACTON 1993E give $\sigma\mathrm {( {{\mathit e}^{+}} {{\mathit e}^{-}} \rightarrow {{\mathit X}^{0}} {{\mathit \gamma}} )}\cdot{}$B( ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ )$<0.4~$pb (95$\%$CL) for ${\mathit m}_{{{\mathit X}^{0}}}=60$ $\pm2.5$ GeV. If the process occurs via $\mathit s$-channel ${{\mathit \gamma}}$ exchange, the limit translates to $\Gamma\mathrm {({{\mathit X}^{0}})}\cdot{}$B( ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ )${}^{2}<$20 MeV for ${\mathit m}_{{{\mathit X}^{0}}}$ = $60$ $\pm1$ GeV.
|
6
ABREU 1992D give ${{\mathit \sigma}_{{Z}}}$ $\cdot{}$ B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit X}^{0}}$ ) $\cdot{}$ B( ${{\mathit X}^{0}}$ $\rightarrow$ hadrons) $<(3 - 10)~$pb for ${\mathit m}_{{{\mathit X}^{0}}}$ = $10 - 78$ GeV. A very similar limit is obtained for spin-1 ${{\mathit X}^{0}}$.
|
7
ADRIANI 1992F search for isolated ${{\mathit \gamma}}$ in hadronic ${{\mathit Z}}$ decays. The limit ${{\mathit \sigma}_{{Z}}}$ $\cdot{}$ B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit X}^{0}}$ ) $\cdot{}$ B( ${{\mathit X}^{0}}$ $\rightarrow$ hadrons) $<(2 - 10)~$pb (95$\%$CL) is given for ${\mathit m}_{{{\mathit X}^{0}}}$ = $25 - 85$ GeV.
|
8
ACTON 1991 searches for ${{\mathit Z}}$ $\rightarrow$ ${{\mathit Z}^{*}}{{\mathit X}^{0}}$ , ${{\mathit Z}^{*}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , or ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ . Excludes any new scalar ${{\mathit X}^{0}}$ with ${\mathit m}_{{{\mathit X}^{0}}}<9.5$ GeV/$\mathit c$ if it has the same coupling to ${{\mathit Z}}{{\mathit Z}^{*}}$ as the MSM Higgs boson.
|
9
ACTON 1991B limits are for ${\mathit m}_{{{\mathit X}^{0}}}$ = $60 - 85$ GeV.
|
10
ADEVA 1991D limits are for ${\mathit m}_{{{\mathit X}^{0}}}$ = $30 - 89$ GeV.
|
11
ADEVA 1991D limits are for ${\mathit m}_{{{\mathit X}^{0}}}$ = $30 - 86$ GeV.
|
12
AKRAWY 1990J give $\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit \gamma}} {{\mathit X}^{0}} )}\cdot{}$B( ${{\mathit X}^{0}}$ $\rightarrow$ hadrons) $<~1.9$ MeV (95$\%$CL) for ${\mathit m}_{{{\mathit X}^{0}}}$ = $32 - 80$ GeV. We divide by $\Gamma\mathrm {({{\mathit Z}})}$ = $2.5$ GeV to get product of branching ratios. For nonresonant transitions, the limit is B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit q}}{{\overline{\mathit q}}}$ ) $<~8.2$ MeV assuming three-body phase space distribution.
|