${{\mathit H}^{\pm\pm}}$ (doubly-charged Higgs boson) mass limits

This section covers searches for a doubly-charged Higgs boson with couplings to lepton pairs. Its weak isospin ${{\mathit T}_{{{3}}}}$ is thus restricted to two possibilities depending on lepton chiralities: ${{\mathit T}_{{{3}}}}({{\mathit H}^{\pm\pm}}$) = $\pm{}$1, with the coupling ${{\mathit g}}_{{{\mathit \ell}} {{\mathit \ell}}}$ to ${{\mathit \ell}_{{{L}}}^{-}}{{\mathit \ell}_{{{L}}}^{'-}}$ and ${{\mathit \ell}_{{{R}}}^{+}}{{\mathit \ell}_{{{R}}}^{'+}}$ (``left-handed'') and ${{\mathit T}_{{{3}}}}({{\mathit H}^{\pm\pm}}$) = 0, with the coupling to ${{\mathit \ell}_{{{R}}}^{-}}{{\mathit \ell}_{{{R}}}^{'-}}$ and ${{\mathit \ell}_{{{L}}}^{+}}{{\mathit \ell}_{{{L}}}^{'+}}$ (``right-handed''). These Higgs bosons appear in some left-right symmetric models based on the gauge group SU(2)$_{L}{\times }SU(2)_{R}{\times }$U(1), the type-II seesaw model, and the Zee-Babu model. The two cases are listed separately in the following. Unless noted, one of the lepton flavor combinations is assumed to be dominant in the decay.

Limits for ${{\mathit H}^{\pm\pm}}$ with $\mathit T_{3}$ = $\pm{}$1

INSPIRE   PDGID:
S064HD1
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$> 1020$ 95 1
AAD
2023AI
ATLS ${{\mathit \ell}}{{\mathit \ell}}$
$> 220$ 95 2
AABOUD
2019K
ATLS ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$
$> 768$ 95 3
AABOUD
2018BC
ATLS ${{\mathit e}}{{\mathit e}}$
$> 846$ 95 3
AABOUD
2018BC
ATLS ${{\mathit \mu}}{{\mathit \mu}}$
$>468$ 95 4
AAD
2015AG
ATLS ${{\mathit e}}{{\mathit \mu}}$
$>400$ 95 5
AAD
2015AP
ATLS ${{\mathit e}}{{\mathit \tau}}$
$>400$ 95 5
AAD
2015AP
ATLS ${{\mathit \mu}}{{\mathit \tau}}$
$> 169$ 95 6
CHATRCHYAN
2012AU
CMS ${{\mathit \tau}}{{\mathit \tau}}$
$> 300$ 95 6
CHATRCHYAN
2012AU
CMS ${{\mathit \mu}}{{\mathit \tau}}$
$> 293$ 95 6
CHATRCHYAN
2012AU
CMS ${{\mathit e}}{{\mathit \tau}}$
$> 395$ 95 6
CHATRCHYAN
2012AU
CMS ${{\mathit \mu}}{{\mathit \mu}}$
$> 391$ 95 6
CHATRCHYAN
2012AU
CMS ${{\mathit e}}{{\mathit \mu}}$
$> 382$ 95 6
CHATRCHYAN
2012AU
CMS ${{\mathit e}}{{\mathit e}}$
$>98.1$ 95 7
ABDALLAH
2003
DLPH ${{\mathit \tau}}{{\mathit \tau}}$
$>99.0$ 95 8
ABBIENDI
2002C
OPAL ${{\mathit \tau}}{{\mathit \tau}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$>350$ 95 9
AAD
2021U
ATLS ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$
$>230$ 95 10
AAD
2021U
ATLS ${{\mathit H}^{\pm\pm}}{{\mathit H}^{\mp}}$ associated production, ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$, ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
11
SIRUNYAN
2021W
CMS ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$
12
SIRUNYAN
2019CQ
CMS ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$
13
SIRUNYAN
2018CC
CMS ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$
$>551$ 95 4
AAD
2015AG
ATLS ${{\mathit e}}{{\mathit e}}$
$>516$ 95 4
AAD
2015AG
ATLS ${{\mathit \mu}}{{\mathit \mu}}$
14
KANEMURA
2015
RVUE ${{\mathit W}^{(*)\pm}}{{\mathit W}^{(*)\pm}}$
15
KHACHATRYAN
2015D
CMS ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$
16
KANEMURA
2014
RVUE ${{\mathit W}^{(*)\pm}}{{\mathit W}^{(*)\pm}}$
$> 330$ 95 17
AAD
2013Y
ATLS ${{\mathit \mu}}{{\mathit \mu}}$
$> 237$ 95 17
AAD
2013Y
ATLS ${{\mathit \mu}}{{\mathit \tau}}$
$> 355$ 95 18
AAD
2012AY
ATLS ${{\mathit \mu}}{{\mathit \mu}}$
$> 398$ 95 19
AAD
2012CQ
ATLS ${{\mathit \mu}}{{\mathit \mu}}$
$> 375$ 95 19
AAD
2012CQ
ATLS ${{\mathit e}}{{\mathit \mu}}$
$> 409$ 95 19
AAD
2012CQ
ATLS ${{\mathit e}}{{\mathit e}}$
$> 128$ 95 20
ABAZOV
2012A
D0 ${{\mathit \tau}}{{\mathit \tau}}$
$> 144$ 95 20
ABAZOV
2012A
D0 ${{\mathit \mu}}{{\mathit \tau}}$
$> 245$ 95 21
AALTONEN
2011AF
CDF ${{\mathit \mu}}{{\mathit \mu}}$
$> 210$ 95 21
AALTONEN
2011AF
CDF ${{\mathit e}}{{\mathit \mu}}$
$> 225$ 95 21
AALTONEN
2011AF
CDF ${{\mathit e}}{{\mathit e}}$
$> 114$ 95 22
AALTONEN
2008AA
CDF ${{\mathit e}}{{\mathit \tau}}$
$> 112$ 95 22
AALTONEN
2008AA
CDF ${{\mathit \mu}}{{\mathit \tau}}$
$> 168$ 95 23
ABAZOV
2008V
D0 ${{\mathit \mu}}{{\mathit \mu}}$
24
AKTAS
2006A
H1 single ${{\mathit H}^{\pm\pm}}$
$> 133$ 95 25
ACOSTA
2005L
CDF stable
$>118.4$ 95 26
ABAZOV
2004E
D0 ${{\mathit \mu}}{{\mathit \mu}}$
27
ABBIENDI
2003Q
OPAL $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV, single ${{\mathit H}^{\pm\pm}}$
28
GORDEEV
1997
SPEC muonium conversion
29
ASAKA
1995
THEO
$>45.6$ 95 30
ACTON
1992M
OPAL
$>30.4$ 95 31
ACTON
1992M
OPAL
$\text{none 6.5 - 36.6}$ 95 32
SWARTZ
1990
MRK2
1  AAD 2023AI search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Decay branching ratios B( ${{\mathit H}^{++}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{'+}}$) for the six flavor combinations are assumed to be equal, adding up to unity. If the T$_{3}$ = 0 states are degenerate with the T$_{3}$ = $\pm1$ states, the limit becomes 1080 GeV.
2  AABOUD 2019K search for pair production of ${{\mathit H}^{++}}{{\mathit H}^{--}}$ followed by the decay ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The search is interpreted in a doublet-triplet extension of the scalar sector with a vev of 0.1 GeV, leading to B( ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$) = 1. See their Fig. 5 for limits on the cross section for ${\mathit m}_{{{\mathit H}^{++}}}$ between 200 and 700 GeV.
3  See their Figs. 11(b) and 13 for limits with smaller branching ratios.
4  AAD 2015AG search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The limit assumes 100$\%$ branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.
5  AAD 2015AP search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The limit assumes 100$\%$ branching ratio to the specified final state.
6  CHATRCHYAN 2012AU search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production with 4.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit assumes 100$\%$ branching ratio to the specified final state. See their Table 6 for limits including associated ${{\mathit H}^{++}}{{\mathit H}^{-}}$ production or assuming different scenarios.
7  ABDALLAH 2003 search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ pair production either followed by ${{\mathit H}^{++}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{+}}$, or decaying outside the detector.
8  ABBIENDI 2002C searches for pair production of ${{\mathit H}^{++}}{{\mathit H}^{--}}$, with ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ (${{\mathit \ell}},{{\mathit \ell}^{\,'}}$ = ${{\mathit e}},{{\mathit \mu}},{{\mathit \tau}}$). The limit holds for ${{\mathit \ell}}={{\mathit \ell}^{\,'}}={{\mathit \tau}}$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $\mathit g({{\mathit H}}{{\mathit \ell}}{{\mathit \ell}}){ {}\gtrsim{} }10^{-7}$.
9  AAD 2021U search for pair production of ${{\mathit H}^{++}}{{\mathit H}^{--}}$ followed by the decay ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The search is interpreted in a triplet extension of the SM Higgs sector with a triplet vev of 0.1 GeV, leading to B( ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$) = 1. See their Fig. 9(a) for limits on the cross section for ${\mathit m}_{{{\mathit H}^{++}}}$ between 200 and 600 GeV.
10  AAD 2021U search for associated production of ${{\mathit H}^{\pm\pm}}{{\mathit H}^{\mp}}$ followed by the decays ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$, ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. ${{\mathit H}^{\pm\pm}}$ and ${{\mathit H}^{\pm}}$ are assumed to be degenerate in mass within 5 GeV. The search is interpreted in a triplet extension of the SM Higgs sector with a triplet vev of 0.1 GeV, leading to B( ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$) = 1. See their Fig. 9(b) for limits on the cross section for ${\mathit m}_{{{\mathit H}^{++}}}$ between 200 and 600 GeV.
11  SIRUNYAN 2021W search for vector boson fusion production of ${{\mathit H}^{\pm\pm}}$ decaying to ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \nu}}{{\mathit \ell}^{\pm}}{{\mathit \nu}}$ in 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{++}}}$ = $0.2 - 3.0$ TeV.
12  SIRUNYAN 2019CQ search for ${{\mathit H}^{\pm\pm}}$ production by vector boson fusion followed by the decay ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\mathit \ell}}{{\mathit \nu}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{\pm\pm}}}$ between 0.6 and 2 TeV.
13  SIRUNYAN 2018CC search for ${{\mathit H}^{\pm\pm}}$ production by vector boson fusion followed by the decay ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 3 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{\pm\pm}}}$ between 200 and 1000 GeV.
14  KANEMURA 2015 examine the case where ${{\mathit H}^{++}}$ decays preferentially to ${{\mathit W}^{(*)}}{{\mathit W}^{(*)}}$ and estimate that a lower mass limit of $\sim{}$84 GeV can be derived from the same-sign dilepton data of AAD 2015AG if ${{\mathit H}^{++}}$ decays with 100$\%$ branching ratio to ${{\mathit W}^{(*)}}{{\mathit W}^{(*)}}$.
15  KHACHATRYAN 2015D search for ${{\mathit H}^{\pm\pm}}$ production by vector boson fusion followed by the decay ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit W}^{\pm}}$ in 19.4 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 4 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{++}}}$ between 160 and 800 GeV.
16  KANEMURA 2014 examine the case where ${{\mathit H}^{++}}$ decays preferentially to ${{\mathit W}^{(*)}}{{\mathit W}^{(*)}}$ and estimate that a lower mass limit of $\sim{}$60 GeV can be derived from the same-sign dilepton data of AAD 2012CY.
17  AAD 2013Y search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production in a generic search of events with three charged leptons in 4.6 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit assumes 100$\%$ branching ratio to the specified final state.
18  AAD 2012AY search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production with 1.6 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit assumes 100$\%$ branching ratio to the specified final state.
19  AAD 2012CQ search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production with 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit assumes 100$\%$ branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
20  ABAZOV 2012A search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production in 7.0 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV.
21  AALTONEN 2011AF search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production in 6.1 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV.
22  AALTONEN 2008AA search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= 1.96 TeV. The limit assumes 100$\%$ branching ratio to the specified final state.
23  ABAZOV 2008V search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ production in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= 1.96 TeV. The limit is for B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \mu}}$) = 1. The limit is updated in ABAZOV 2012A.
24  AKTAS 2006A search for single ${{\mathit H}^{\pm\pm}}$ production in ${{\mathit e}}{{\mathit p}}$ collisions at HERA. Assuming that ${{\mathit H}^{++}}$ only couples to ${{\mathit e}^{+}}{{\mathit \mu}^{+}}$ with $\mathit g_{{{\mathit e}} {{\mathit \mu}}}$ = 0.3 (electromagnetic strength), a limit ${\mathit m}_{{{\mathit H}^{++}}}$ $>$ 141 GeV (95$\%$ CL) is derived. For the case where ${{\mathit H}^{++}}$ couples to ${{\mathit e}}{{\mathit \tau}}$ only the limit is 112 GeV.
25  ACOSTA 2005L search for ${{\mathit H}^{{++}}}{{\mathit H}^{{--}}}$ pair production in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions. The limit is valid for ${{\mathit g}}_{{{\mathit \ell}} {{\mathit \ell}^{\,'}}}$ $<$ $10^{-8}$ so that the Higgs decays outside the detector.
26  ABAZOV 2004E search for ${{\mathit H}^{++}}{{\mathit H}^{--}}$ pair production in ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit \mu}^{\pm}}{{\mathit \mu}^{\pm}}$. The limit is valid for $\mathit g_{{{\mathit \mu}} {{\mathit \mu}}}{ {}\gtrsim{} }$ $10^{-7}$.
27  ABBIENDI 2003Q searches for single ${{\mathit H}^{\pm\pm}}$ via direct production in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{\mp}}{{\mathit e}^{\mp}}{{\mathit H}^{\pm\pm}}$, and via ${{\mathit t}}$-channel exchange in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$. In the direct case, and assuming B( ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$) = 1, a 95$\%$ CL limit on ${{\mathit h}}_{ee}$ $<$ 0.071 is set for ${\mathit m}_{{{\mathit H}^{\pm\pm}}}$ $<$ 160 GeV (see Fig. 6). In the second case, indirect limits on ${{\mathit h}}_{ee}$ are set for ${\mathit m}_{{{\mathit H}^{\pm\pm}}}$ $<$ 2 TeV (see Fig. 8).
28  GORDEEV 1997 search for muonium-antimuonium conversion and find $\mathit G_{{{\mathit M}} {{\overline{\mathit M}}}}/\mathit G_{\mathit F}<0.14$ (90$\%~$ CL), where $\mathit G_{{{\mathit M}} {{\overline{\mathit M}}}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to ${\mathit m}_{{{\mathit H}^{++}}}>210$ GeV if the Yukawa couplings of ${{\mathit H}^{++}}$ to and ${{\mathit \mu}}{{\mathit \mu}}$ are as large as the weak gauge coupling. For similar limits on muonium-antimuonium conversion, see the muon Particle Listings.
29  ASAKA 1995 point out that ${{\mathit H}^{++}}$ decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 1992M from the search of dilepton modes does not apply.
30  ACTON 1992M limit assumes ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ or ${{\mathit H}^{\pm\pm}}$ does not decay in the detector. Thus the region $\mathit g_{{{\mathit \ell}} {{\mathit \ell}}}\approx{}10^{-7}$ is not excluded.
31  ACTON 1992M from $\Delta \Gamma _{{{\mathit Z}}}<$40 MeV.
32  SWARTZ 1990 assume ${{\mathit H}^{\pm\pm}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \ell}^{\pm}}$ (any flavor). The limits are valid for the Higgs-lepton coupling g(${{\mathit H}}{{\mathit \ell}}{{\mathit \ell}}$) ${ {}\gtrsim{} }$ $7.4 \times 10^{-7}/[{\mathit m}_{{{\mathit H}}}$/GeV]${}^{1/2}$. The limits improve somewhat for ${{\mathit e}}{{\mathit e}}$ and ${{\mathit \mu}}{{\mathit \mu}}$ decay modes.
References