(B) Three-neutrino mixing parameters

sin$^2(\theta _{23})$

INSPIRE   PDGID:
S067P23
The reported limits below correspond to the projection onto the sin$^2(\theta _{23})$ axis of the 90$\%$ CL contours in the sin$^2(\theta _{23})$ $−$ $\Delta {{\mathit m}^{2}}_{{{\mathit 32}}}$ plane presented by the authors. Unless otherwise specified, the limits are 90$\%$ CL and the reported uncertainties are 68$\%$ CL.

If an experiment reports sin$^2(2~\theta _{23})$ we convert the value to sin$^2(~\theta _{23})$.
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ 0.553 {}^{+0.016}_{-0.024}}$ OUR FIT  Error includes scale factor of 1.1.  Assuming inverted mass ordering
$\bf{ 0.558 {}^{+0.015}_{-0.021}}$ OUR FIT  Assuming normal mass ordering
$0.51$ $\pm0.05$ 1
ABBASI
2023
ICCB Normal mass ordering
$0.561$ ${}^{+0.021}_{-0.032}$ 2
ABE
2023F
T2K Normal mass ordering
$0.563$ ${}^{+0.017}_{-0.032}$ 2
ABE
2023F
T2K Inverted mass ordering
$0.57$ ${}^{+0.03}_{-0.04}$ 3
ACERO
2022
NOVA Normal mass ordering; octant II for ${{\mathit \theta}_{{{23}}}}$
$0.56$ $\pm0.04$ 3
ACERO
2022
NOVA Inverted mass ordering; octant II for ${{\mathit \theta}_{{{23}}}}$
$0.43$ ${}^{+0.20}_{-0.04}$ 4
ADAMSON
2020A
MINS Normal mass ordering
$0.42$ ${}^{+0.07}_{-0.03}$ 4
ADAMSON
2020A
MINS Inverted mass ordering
$0.588$ ${}^{+0.031}_{-0.064}$ 5
ABE
2018B
SKAM Normal mass ordering, ${{\mathit \theta}_{{{13}}}}$ constrained
$0.575$ ${}^{+0.036}_{-0.073}$ 5
ABE
2018B
SKAM Inverted mass ordering, ${{\mathit \theta}_{{{13}}}}$ constrained
• • We do not use the following data for averages, fits, limits, etc. • •
$0.47$ ${}^{+0.11}_{-0.02}$ 6
ABE
2023D
T2K ${{\mathit \nu}_{{{\mu}}}}$ disappearance
$0.45$ ${}^{+0.16}_{-0.04}$ 6
ABE
2023D
T2K ${{\overline{\mathit \nu}}_{{{\mu}}}}$ disappearance
$0.51$ ${}^{+0.06}_{-0.07}$ 7
ABE
2021A
T2K ${{\mathit \nu}_{{{\mu}}}}$ disappearance
$0.43$ ${}^{+0.21}_{-0.05}$ 7
ABE
2021A
T2K ${{\overline{\mathit \nu}}_{{{\mu}}}}$ disappearance
$0.574$ $\pm0.014$ 8
SALAS
2021
FIT Normal mass ordering, global fit
$0.578$ ${}^{+0.010}_{-0.017}$ 8
SALAS
2021
FIT Inverted mass ordering, global fit
$0.455$ 9
AARTSEN
2020
ICCB For both mass orderings
$0.53$ ${}^{+0.03}_{-0.04}$ 10
ABE
2020F
T2K Both mass orderings
$0.573$ ${}^{+0.016}_{-0.020}$ 11
ESTEBAN
2020A
FIT Normal mass ordering, global fit
$0.575$ ${}^{+0.016}_{-0.019}$ 11
ESTEBAN
2020A
FIT Inverted mass ordering, global fit
$0.58$ ${}^{+0.04}_{-0.13}$ 12
AARTSEN
2019C
ICCB
$0.56$ ${}^{+0.04}_{-0.03}$ 13
ACERO
2019
NOVA Normal mass order; octant II for ${{\mathit \theta}_{{{23}}}}$
$0.48$ ${}^{+0.04}_{-0.03}$ 13, 14
ACERO
2019
NOVA Normal mass order; octant I for ${{\mathit \theta}_{{{23}}}}$
$0.56$ ${}^{+0.04}_{-0.03}$ 13, 14
ACERO
2019
NOVA Inverted mass order; octant II for ${{\mathit \theta}_{{{23}}}}$
$0.47$ ${}^{+0.04}_{-0.03}$ 13, 14
ACERO
2019
NOVA Inverted mass order; octant I for ${{\mathit \theta}_{{{23}}}}$
$0.49$ ${}^{+0.30}_{-0.28}$
AGAFONOVA
2019
OPER
$0.50$ ${}^{+0.20}_{-0.19}$ 15
ALBERT
2019
ANTR Atmospheric ${{\mathit \nu}}$, deep sea telescope
$0.51$ ${}^{+0.07}_{-0.09}$ 16
AARTSEN
2018A
ICCB Normal mass ordering
$0.587$ ${}^{+0.036}_{-0.069}$ 17
ABE
2018B
SKAM 3${{\mathit \nu}}$ osc: normal mass ordering, ${{\mathit \theta}_{{{13}}}}$ free
$0.551$ ${}^{+0.044}_{-0.075}$ 17
ABE
2018B
SKAM 3${{\mathit \nu}}$ osc: inverted mass ordering, ${{\mathit \theta}_{{{13}}}}$ free
$0.526$ ${}^{+0.032}_{-0.036}$ 18
ABE
2018G
T2K Normal mass ordering, ${{\mathit \theta}_{{{13}}}}$ constrained
$0.530$ ${}^{+0.030}_{-0.034}$ 18
ABE
2018G
T2K Inverted mass ordering, ${{\mathit \theta}_{{{13}}}}$ constrained
$0.56$ $\pm0.04$ 19
ACERO
2018
NOVA Normal mass order; octant II for ${{\mathit \theta}_{{{23}}}}$
$0.47$ $\pm0.04$ 19
ACERO
2018
NOVA Normal mass order; octant I for ${{\mathit \theta}_{{{23}}}}$
$0.547$ ${}^{+0.020}_{-0.030}$
DE-SALAS
2018
FIT Normal mass ordering, global fit
$0.551$ ${}^{+0.018}_{-0.030}$
DE-SALAS
2018
FIT Inverted mass order, global fit
$0.532$ ${}^{+0.061}_{-0.087}$ 20
ABE
2017A
T2K Normal mass ordering
$0.534$ ${}^{+0.061}_{-0.087}$ 20
ABE
2017A
T2K Inverted mass ordering
$0.51$ ${}^{+0.08}_{-0.07}$
ABE
2017C
T2K Normal mass ordering with neutrinos
$0.42$ ${}^{+0.25}_{-0.07}$
ABE
2017C
T2K Normal mass ordering with antineutrinos
$0.52$ ${}^{+0.075}_{-0.09}$
ABE
2017C
T2K normal mass ordering with neutrinos and antineutrinos
$0.55$ ${}^{+0.05}_{-0.09}$ 20
ABE
2017F
T2K Normal mass ordering
$0.55$ ${}^{+0.05}_{-0.08}$ 20
ABE
2017F
T2K Inverted mass ordering
$0.404$ ${}^{+0.022}_{-0.030}$ 21
ADAMSON
2017A
NOVA Normal mass ordering; octant I for ${{\mathit \theta}_{{{23}}}}$
$0.624$ ${}^{+0.022}_{-0.030}$ 21
ADAMSON
2017A
NOVA Normal mass ordering; octant II for ${{\mathit \theta}_{{{23}}}}$
$0.398$ ${}^{+0.030}_{-0.022}$ 21
ADAMSON
2017A
NOVA Inverted mass ordering; octant I for ${{\mathit \theta}_{{{23}}}}$
$0.618$ ${}^{+0.022}_{-0.030}$ 21
ADAMSON
2017A
NOVA Inverted mass ordering; octant II for ${{\mathit \theta}_{{{23}}}}$
$0.45$ ${}^{+0.19}_{-0.07}$ 22
ABE
2016D
T2K 3${{\mathit \nu}}$ osc; normal mass ordering; ${{\overline{\mathit \nu}}}$ beam
$0.38\text{ to }0.65 $ 23
ADAMSON
2016A
NOVA normal mass ordering
$0.37\text{ to }0.64 $ 23
ADAMSON
2016A
NOVA Inverted mass ordering
$0.53$ ${}^{+0.09}_{-0.12}$ 24
AARTSEN
2015A
ICCB Normal mass ordering
$0.51$ ${}^{+0.09}_{-0.11}$ 24
AARTSEN
2015A
ICCB Inverted mass ordering
$0.514$ ${}^{+0.055}_{-0.056}$ 25
ABE
2014
T2K 3${{\mathit \nu}}$ osc.; normal mass ordering
$0.511$ $\pm0.055$ 25
ABE
2014
T2K 3${{\mathit \nu}}$ osc.; inverted mass ordering
$0.41$ ${}^{+0.23}_{-0.06}$ 26
ADAMSON
2014
MINS Normal mass ordering
$0.41$ ${}^{+0.26}_{-0.07}$ 26
ADAMSON
2014
MINS Inverted mass ordering
$0.567$ ${}^{+0.032}_{-0.128}$ 27
FORERO
2014
FIT Normal mass ordering
$0.573$ ${}^{+0.025}_{-0.043}$ 27
FORERO
2014
FIT Inverted mass ordering
$0.452$ ${}^{+0.052}_{-0.028}$ 28
GONZALEZ-GARC..
2014
FIT Normal mass ordering; global fit
$0.579$ ${}^{+0.025}_{-0.037}$ 28
GONZALEZ-GARC..
2014
FIT Inverted mass ordering; global fit
$0.24\text{ to }0.76 $ 29
AARTSEN
2013B
ICCB DeepCore, 2${{\mathit \nu}}$ oscillation
$0.514$ $\pm0.082$ 30
ABE
2013G
T2K 3${{\mathit \nu}}$ osc.; normal mass ordering
$0.388$ ${}^{+0.051}_{-0.053}$ 31
ADAMSON
2013B
MINS Beam + Atmospheric; identical ${{\mathit \nu}}$ $\&$ ${{\overline{\mathit \nu}}}$
$0.3\text{ to }0.7 $ 32
ABE
2012A
T2K Off-axis beam
$0.28\text{ to }0.72 $ 33
ADAMSON
2012
MINS ${{\overline{\mathit \nu}}}$ beam
$0.25\text{ to }0.75 $ 34, 35
ADAMSON
2012B
MINS MINOS atmospheric
$0.27\text{ to }0.73 $ 34, 36
ADAMSON
2012B
MINS MINOS pure atmospheric ${{\mathit \nu}}$
$0.21\text{ to }0.79 $ 34, 36
ADAMSON
2012B
MINS MINOS pure atmospheric ${{\overline{\mathit \nu}}}$
$0.15\text{ to }0.85 $ 37
ADRIAN-MARTIN..
2012
ANTR Atmospheric ${{\mathit \nu}}$ with deep see telescope
$0.39\text{ to }0.61 $ 38
ABE
2011C
SKAM Super-Kamiokande
$0.34\text{ to }0.66 $
ADAMSON
2011
MINS 2${{\mathit \nu}}$ osc.; maximal mixing
$0.31$ ${}^{+0.10}_{-0.07}$ 39
ADAMSON
2011B
MINS ${{\overline{\mathit \nu}}}$ beam
$0.41\text{ to }0.59 $ 40
WENDELL
2010
SKAM 3${{\mathit \nu}}$ osc. with solar terms; ${{\mathit \theta}_{{{13}}}}$=0
$0.39\text{ to }0.61 $ 41
WENDELL
2010
SKAM 3${{\mathit \nu}}$ osc.; normal mass ordering
$0.37\text{ to }0.63 $ 42
WENDELL
2010
SKAM 3${{\mathit \nu}}$ osc.; inverted mass ordering
$0.31\text{ to }0.69 $
ADAMSON
2008A
MINS MINOS
$0.05\text{ to }0.95 $ 43
ADAMSON
2006
MINS Atmospheric ${{\mathit \nu}}$ with far detector
$0.18\text{ to }0.82 $ 44
AHN
2006A
K2K KEK to Super-K
$0.23\text{ to }0.77 $ 45
MICHAEL
2006
MINS MINOS
$0.18\text{ to }0.82 $ 46
ALIU
2005
K2K KEK to Super-K
$0.18\text{ to }0.82 $ 47
ALLISON
2005
SOU2
$0.36\text{ to }0.64 $ 48
ASHIE
2005
SKAM Super-Kamiokande
$0.28\text{ to }0.72 $ 49
AMBROSIO
2004
MCRO MACRO
$0.34\text{ to }0.66 $ 50
ASHIE
2004
SKAM L/E distribution
$0.08\text{ to }0.92 $ 51
AHN
2003
K2K KEK to Super-K
$0.13\text{ to }0.87 $ 52
AMBROSIO
2003
MCRO MACRO
$0.26\text{ to }0.74 $ 53
AMBROSIO
2003
MCRO MACRO
$0.15\text{ to }0.85 $ 54
SANCHEZ
2003
SOU2 Soudan-2 Atmospheric
$0.28\text{ to }0.72 $ 55
AMBROSIO
2001
MCRO Upward ${{\mathit \mu}}$
$0.29\text{ to }0.71 $ 56
AMBROSIO
2001
MCRO Upward ${{\mathit \mu}}$
$0.13\text{ to }0.87 $ 57
FUKUDA
1999C
SKAM Upward ${{\mathit \mu}}$
$0.23\text{ to }0.77 $ 58
FUKUDA
1999D
SKAM Upward ${{\mathit \mu}}$
$0.08\text{ to }0.92 $ 59
FUKUDA
1999D
SKAM Stop ${{\mathit \mu}}$ $/$ through
$0.29\text{ to }0.71 $ 60
FUKUDA
1998C
SKAM Super-Kamiokande
$0.08\text{ to }0.92 $ 61
HATAKEYAMA
1998
KAMI Kamiokande
$0.24\text{ to }0.76 $ 62
HATAKEYAMA
1998
KAMI Kamiokande
$0.20\text{ to }0.80 $ 63
FUKUDA
1994
KAMI Kamiokande
1  ABBASI 2023 uses atmospheric neutrino data measured between 2011 and 2019 with the low-energy subdetector DeepCore of the IceCube neutrino telescope. Supersedes AARTSEN 2018A.
2  ABE 2023F results are based on data collected between 2010 and 2020 in (anti)neutrino mode and include a neutrino beam exposure of $1.97 \times 10^{21}$ ($1.63 \times 10^{21}$) protons on target. Supersedes ABE 2020F.
3  ACERO 2022 uses data from Jun 29, 2016 to Feb 26, 2019 ($12.5 \times 10^{20}$ POT) and Feb 6, 2014 to Mar 20, 2020 ($13.6 \times 10^{20}$ POT). Best fit for octant I (lower octant) is 0.46 for both normal and inverted mass orderings. Supersedes ACERO 2019.
4  ADAMSON 2020A uses the complete dataset from MINOS and MINOS+ experiments. The data were collected using a total exposure of $23.76 \times 10^{20}$ protons on target and 60.75 kton$\cdot{}$yr exposure to atmospheric neutrinos. Supersedes ADAMSON 2014.
5  ABE 2018B uses 328 kton$\cdot{}$years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the three parameters, $\Delta $m${}^{2}_{32}$, sin$^2({{\mathit \theta}_{{{23}}}})$, and $\delta $, while the solar parameters and sin$^2({{\mathit \theta}_{{{13}}}})$ are fixed to $\Delta $m${}^{2}_{21}$= ($7.53$ $\pm0.18$) $ \times 10^{-5}$ eV${}^{2}$, sin$^2({{\mathit \theta}_{{{12}}}})$ = $0.304$ $\pm0.014$, and sin$^2({{\mathit \theta}_{{{13}}}})$ = $0.0219$ $\pm0.0012$.
6  ABE 2023D uses the same dataset as ABE 2023F. The measurement of sin$^2({{\mathit \theta}_{{{23}}}})$ is performed independently for ${{\mathit \nu}_{{{\mu}}}}$ and ${{\overline{\mathit \nu}}_{{{\mu}}}}$.
7  ABE 2021A results are based on $1.49 \times 10^{21}$ POT in neutrino mode and $1.64 \times 10^{21}$ POT in antineutrino mode.
8  SALAS 2021 reports results of a global fit to neutrino oscillation data available at the time of the Neutrino 2020 conference.
9  AARTSEN 2020 uses the data taken between May 2012 and April 2014 with the low-energy subdetector DeepCore of the IceCube neutrino telescope. The reconstructed energy range is between 4 (5) and 90 (80) GeV for the main (confirmatory) analysis. Though the observed best-fit is in the lower octant for both mass orderings, a substantial range of sin$^2({{\mathit \theta}_{{{23}}}})$ $>$ 0.5 is still compatible with the observed data for both mass orderings.
10  ABE 2020F results are based on data collected between 2009 and 2018 in (anti)neutrino mode and include a neutrino beam exposure of $1.49 \times 10^{21}$ ($1.64 \times 10^{21}$) protons on target. Supersedes ABE 2018G.
11  ESTEBAN 2020A reports results of a global fit to neutrino oscillation data available at the time of the Neutrino2020 conference.
12  AARTSEN 2019C uses three years (April 2012 $-$ May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV, measured with the low-energy subdetector DeepCore of the IceCube neutrino telescope. AARTSEN 2019C adopts looser event selection criteria to prioritize the efficiency of selecting neutrino events, different from tighter event selection criteria which closely follow the criteria used by AARTSEN 2018A to measure the ${{\mathit \nu}_{{{\mu}}}}$ disappearance.
13  ACERO 2019 is based on a sample size of $12.33 \times 10^{20}$ protons on target. The fit combines both antineutrino and neutrino data to extract the oscillation parameters. The results favor the normal mass ordering by 1.9 ${{\mathit \sigma}}$ and $\theta _{23}$ values in octant II by 1.6 ${{\mathit \sigma}}$. Supersedes ACERO 2018.
14  Errors are from normal mass ordering and ${{\mathit \theta}_{{{13}}}}$ octant II fits.
15  ALBERT 2019 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2016 (2830 days of total live time). Supersedes ADRIAN-MARTINEZ 2012.
16  AARTSEN 2018A uses three years (April 2012 $-$ May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV, measured with the low-energy subdetector DeepCore of the IceCube neutrino telescope. AARTSEN 2018A also reports the best fit result for the inverted mass ordering as $\Delta $m${}^{2}_{32}$ = $-2.32 \times 10^{-3}$ eV${}^{2}$ and sin$^2({{\mathit \theta}_{{{23}}}})$ = 0.51. Uncertainties for the inverted mass ordering fits were not provided. Supersedes AARTSEN 2015A.
17  ABE 2018B uses 328 kton$\cdot{}$years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the four parameters, $\Delta $m${}^{2}_{32}$, sin$^2{{\mathit \theta}_{{{23}}}}$, sin$^2{{\mathit \theta}_{{{13}}}}$, and $\delta $, while the solar parameters are fixed to $\Delta $m${}^{2}_{21}$= ($7.53$ $\pm0.18$) $ \times 10^{-5}$ eV${}^{2}$ and sin$^2{{\mathit \theta}_{{{12}}}}$ = $0.304$ $\pm0.014$.
18  ABE 2018G data prefers normal mass ordering is with a posterior probability of 87$\%$. Supersedes ABE 2017F.
19  ACERO 2018 performs a joint fit to the data for ${{\mathit \nu}_{{{\mu}}}}$ disappearance and ${{\mathit \nu}_{{{e}}}}$ appearance. The overall best fit favors normal mass ordering and ${{\mathit \theta}_{{{23}}}}$ in octant II. No 1$\sigma $ confidence intervals are presented for the inverted mass ordering scenarios. Superseded by ACERO 2019.
20  Errors are from the projections of the 68$\%$ contour on 2D plot of $\Delta $m${}^{2}$ versus sin$^2({{\mathit \theta}_{{{23}}}})$. ABE 2017F supersedes ABE 2017A. Superseded by ABE 2018G.
21  Superseded by ACERO 2018.
22  ABE 2016D reports oscillation results using ${{\overline{\mathit \nu}}_{{{\mu}}}}$ disappearance in an off-axis beam.
23  ADAMSON 2016A obtains sin$^2({{\mathit \theta}_{{{23}}}})$ in the 68$\%$ C.L. range [0.38, 0.65] ([0.37, 0.64]), with two statistically degenerate best-fit values of 0.44 and 0.59 (0.44 and 0.59) for normal (inverted) mass ordering. Superseded by ADAMSON 2017A.
24  AARTSEN 2015A obtains this result by a three-neutrino oscillation analysis using $10 - 100$ GeV muon neutrino sample from a total of 953 days of measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope. Superseded by AARTSEN 2018A.
25  ABE 2014 results are based on ${{\mathit \nu}_{{{\mu}}}}$ disappearance using three-neutrino oscillation fit. The confidence intervals are derived from one dimensional profiled likelihoods. Superseded by ABE 2017A.
26  ADAMSON 2014 uses a complete set of accelerator and atmospheric data. The analysis combines the ${{\mathit \nu}_{{{\mu}}}}$ disappearance and ${{\mathit \nu}_{{{e}}}}$ appearance data using three-neutrino oscillation fit. The fit results are obtained for normal and inverted mass ordering assumptions. The best fit is for first ${{\mathit \theta}_{{{23}}}}$ octant and inverted mass ordering.
27  FORERO 2014 performs a global fit to neutrino oscillations using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.
28  GONZALEZ-GARCIA 2014 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 2015 as 68$\%$ CL intervals of $0.433 - 0.496$ or $0.530 - 0.594$ for normal and $0.514 - 0.612$ for inverted mass ordering.
29  AARTSEN 2013B obtained this result by a two-neutrino oscillation analysis using $20 - 100$ GeV muon neutrino sample from a total of 318.9 days of live-time measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope.
30  The best fit value is sin${}^{2}({{\mathit \theta}_{{{23}}}}$) = $0.514$ $\pm0.082$. Superseded by ABE 2014.
31  ADAMSON 2013B obtained this result from ${{\mathit \nu}_{{{\mu}}}}$ and ${{\overline{\mathit \nu}}_{{{\mu}}}}$ disappearance using ${{\mathit \nu}_{{{\mu}}}}$ ($10.71 \times 10^{20}$ POT) and ${{\overline{\mathit \nu}}_{{{\mu}}}}$ ($3.36 \times 10^{20}$ POT) beams, and atmospheric (37.88kton-years) data from MINOS The fit assumed two-flavor neutrino hypothesis and identical ${{\mathit \nu}_{{{\mu}}}}$ and ${{\overline{\mathit \nu}}_{{{\mu}}}}$ oscillation parameters. Superseded by ADAMSON 2014.
32  ABE 2012A obtained this result by a two-neutrino oscillation analysis. The best-fit point is sin${}^{2}(2{{\mathit \theta}_{{{23}}}}$) = 0.98.
33  ADAMSON 2012 is a two-neutrino oscillation analysis using antineutrinos. The best fit value is sin${}^{2}(2{{\mathit \theta}_{{{23}}}}$) = $0.95$ ${}^{+0.10}_{-0.11}$ $\pm0.01$.
34  ADAMSON 2012B obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 37.9 kton$\cdot{}$yr atmospheric neutrino data with the MINOS far detector.
35  The best fit point is $\Delta $m${}^{2}$ = 0.0019 eV${}^{2}$ and sin$^22\theta $ = 0.99. The 90$\%$ single-parameter confidence interval at the best fit point is sin$^22\theta $ $>$ 0.86.
36  The data are separated into pure samples of ${{\mathit \nu}}$s and ${{\overline{\mathit \nu}}}$s, and separate oscillation parameters for ${{\mathit \nu}}$s and ${{\overline{\mathit \nu}}}$s are fit to the data. The best fit point is ($\Delta $m${}^{2}$, sin$^22\theta $) = (0.0022 eV${}^{2}$, 0.99) and ($\Delta \bar m{}^{2}$, sin$^22{{\overline{\mathit \theta}}}$) = (0.0016 eV${}^{2}$, 1.00). The quoted result is taken from the 90$\%$ C.L. contour in the ($\Delta $m${}^{2}$, sin$^22\theta $) plane obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters.
37  ADRIAN-MARTINEZ 2012 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2010 (863 days of total live time). Superseded by ALBERT 2019.
38  ABE 2011C obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data. ABE 2011C also reported results under a two-neutrino disappearance model with separate mixing parameters between ${{\mathit \nu}}$ and ${{\overline{\mathit \nu}}}$, and obtained sin$^22{{\mathit \theta}}>$ 0.93 for ${{\mathit \nu}}$ and sin$^22{{\mathit \theta}}>$ 0.83 for ${{\overline{\mathit \nu}}}$ at 90$\%$ C.L.
39  ADAMSON 2011B obtained this result by a two-neutrino oscillation analysis of antineutrinos in an antineutrino enhanced beam with $1.71 \times 10^{20}$ protons on target. This results is consistent with the neutrino measurements of ADAMSON 2011 at 2$\%$ C.L.
40  WENDELL 2010 obtained this result (sin$^2\theta _{23}$ = $0.407 - 0.583$) by a three-neutrino oscillation analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data, assuming $\theta _{13}$ = 0 but including the solar oscillation parameters $\Delta $m${}^{2}_{21}$ and sin$^2\theta _{12}$ in the fit.
41  WENDELL 2010 obtained this result (sin$^2\theta _{23}$ = $0.43 - 0.61$) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta $m${}^{2}_{21}$ = 0) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 2006A result.
42  WENDELL 2010 obtained this result (sin$^2\theta _{23}$ = $0.44 - 0.63$) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta $m${}^{2}_{21}$ = 0) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 2006A result.
43  ADAMSON 2006 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector.
44  Supercedes ALIU 2005.
45  MICHAEL 2006 best fit is for maximal mixing. See also ADAMSON 2008.
46  The best fit is for maximal mixing.
47  ALLISON 2005 result is based upon atmospheric neutrino interactions including upward-stopping muons, with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta \mathit m{}^{2}$ = 0.0017 eV${}^{2}$ and sin$^2(2\theta )$ = 0.97.
48  ASHIE 2005 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period.
49  AMBROSIO 2004 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with ${{\mathit E}_{{{\mu}}}}$ $>$ 1 GeV, N$_{low}$ and N$_{high}$, and the numbers of InDown + UpStop and InUp events. Here, N$_{low}$ and N$_{high}$ are the number of events with reconstructed neutrino energies $<$ 30 GeV and $>$ 130 GeV, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for maximal mixing.
50  ASHIE 2004 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ${{\mathit \nu}_{{{\mu}}}}$ disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data.
51  There are several islands of allowed region from this K2K analysis, extending to high values of $\Delta \mathit m{}^{2}$. We only include the one that overlaps atmospheric neutrino analyses. The best fit is for maximal mixing.
52  AMBROSIO 2003 obtained this result on the basis of the ratio R = N$_{low}/N_{high}$, where N$_{low}$ and N$_{high}$ are the number of upward through-going muon events with reconstructed neutrino energy $<$ 30 GeV and $>$ 130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 1998 is used to obtain the limits.
53  AMBROSIO 2003 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 2001. The method of FELDMAN 1998 is used to obtain the limits. The best fit is to maximal mixing.
54  SANCHEZ 2003 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selection ${{\mathit \mu}}$ flavor sample while the ${{\mathit e}}$-flavor sample provides flux normalization. The method of FELDMAN 1998 is used to obtain the allowed region. The best fit is sin$^2(2{{\mathit \theta}})$ = 0.97.
55  AMBROSIO 2001 result is based on the angular distribution of upward through-going muon tracks with ${{\mathit E}_{{{\mu}}}}$ $>$ 1 GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 1998 is used to obtain the limits. The best fit is for maximal mixing.
56  AMBROSIO 2001 result is based on the angular distribution and normalization of upward through-going muon tracks with ${{\mathit E}_{{{\mu}}}}$ $>$ 1 GeV. See the previous footnote.
57  FUKUDA 1999C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of ${{\mathit E}_{{{\mu}}}}$ $>$ 1.6 GeV, the observed flux is ($1.74$ $\pm0.07$ $\pm0.02$) $ \times 10^{-13}$ cm${}^{-2}$s${}^{-1}$sr${}^{-1}$. The best fit is sin$^2(2{{\mathit \theta}})$ = 0.95.
58  FUKUDA 1999D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is ($0.39$ $\pm0.04$ $\pm0.02$) $ \times 10^{-13}$ cm${}^{-2}$s${}^{-1}$sr${}^{-1}$. This is compared to the expected flux of ($0.73$ $\pm0.16$ (theoretical error))${\times }10^{-13}$ cm${}^{-2}$s${}^{-1}$sr${}^{-1}$. The best fit is to maximal mixing.
59  FUKUDA 1999D obtained this result from the zenith dependence of the upward-stopping/through-going flux ratio. The best fit is to maximal mixing.
60  FUKUDA 1998C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for maximal mixing.
61  HATAKEYAMA 1998 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of ${{\mathit E}_{{{\mu}}}}$ $>$ 1.6 GeV, the observed flux of upward through-going muons is ($1.94$ $\pm0.10$ ${}^{+0.07}_{-0.06}$) $ \times 10^{-13}$ cm${}^{-2}$s${}^{-1}$sr${}^{-1}$. This is compared to the expected flux of ($2.46$ $\pm0.54$ (theoretical error))${\times }10^{-13}$ cm${}^{-2}$s${}^{-1}$sr${}^{-1}$. The best fit is for maximal mixing.
62  HATAKEYAMA 1998 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 1994) and upward going muon events. The best fit is sin$^2(2{{\mathit \theta}})$ = 0.95.
63  FUKUDA 1994 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for maximal mixing.
Conservation Laws:
LEPTON FAMILY NUMBER
References