(C) Other neutrino mixing results

The LSND collaboration reported in AGUILAR 2001 a signal which is consistent with ${{\overline{\mathit \nu}}_{{{\mu}}}}$ $\rightarrow$ ${{\overline{\mathit \nu}}_{{{e}}}}$ oscillations. In a three neutrino framework, this would be a measurement of $\theta _{12}$ and $\Delta \mathit m{}^{2}_{21}$. This does not appear to be consistent with most of the other neutrino data. The following listings include results from ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$, ${{\overline{\mathit \nu}}_{{{\mu}}}}$ $\rightarrow$ ${{\overline{\mathit \nu}}_{{{e}}}}$ appearance and ${{\mathit \nu}_{{{\mu}}}}$, ${{\overline{\mathit \nu}}_{{{\mu}}}}$, ${{\mathit \nu}_{{{e}}}}$, and ${{\overline{\mathit \nu}}_{{{e}}}}$ disappearance experiments, and searches for $\mathit CPT$ violation.

sin$^2(2{}\theta )$ for ``Large'' $\Delta \mathit m{}^{2}$ ( ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$)

INSPIRE   PDGID:
S067S1
VALUE ($ 10^{-3} $) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$6\text{ to }1.0\times 10^{3} $ 90 1
AGUILAR-AREVA..
2021
MBNE MiniBooNE; ${{\mathit \nu}}$ + ${{\overline{\mathit \nu}}}$
$<5$ 90 2
AGUILAR-AREVA..
2018C
MBNE MiniBooNE; ${{\mathit \nu}}+{{\overline{\mathit \nu}}}$
$<7.2$ 90
AGAFONOVA
2013
OPER $\Delta \mathit m{}^{2}>$ 0.1 eV${}^{2}$
$0.8\text{ to }3 $ 90 3
AGUILAR-AREVA..
2013A
MBNE MiniBooNE
$<11$ 90 4
ANTONELLO
2013
ICAR ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$
$<6.8$ 90 5
ANTONELLO
2013A
ICAR ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$
$<100$ 90 6
MAHN
2012
MBNE MiniBooNE/SciBooNE
$<1.8$ 90 7
AGUILAR-AREVA..
2007
MBNE MiniBooNE
$<110$ 90 8
AHN
2004
K2K Water Cherenkov
$<1.4$ 90
ASTIER
2003
NOMD CERN SPS
$<1.6$ 90
AVVAKUMOV
2002
NTEV NUTEV FNAL
9
AGUILAR
2001
LSND ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$ osc.prob.
$0.5\text{ to }30 $ 95 10
ATHANASSOPOUL..
1998
LSND ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$
$<3.0$ 90 11
LOVERRE
1996
CHARM/CDHS
$<9.4$ 90
VILAIN
1994C
CHM2 CERN SPS
$<5.6$ 90 12
VILAIN
1994C
CHM2 CERN SPS
1  AGUILAR-AREVALO 2021 result is based on a total of $18.75 \times 10^{20}$ POT in neutrino mode, and $11.27 \times 10^{20}$ POT in anti-neutrino mode. The best fit value is sin$^2(2\theta )$=0.807. The allowed region does not extend to large $\Delta {{\mathit m}^{2}}_{}$. The quoted value is the entire allowed region of sin$^2(2\theta )$ at 90$\%$ C.L. for all values of $\Delta {{\mathit m}^{2}}_{}$. Supersedes AGUILAR-AREVALO 2018C.
2  AGUILAR-AREVALO 2018C result is based on ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$ appearance of $460.5$ $\pm99.0$ events; The best fit value is sin$^2(2\theta )$ = 0.92. The quoted limit for the two-neutrino mixing angle $\theta $ is valid above $\Delta $m${}^{2}$ = 0.59 eV${}^{2}$. Superseded by AGUILAR-AREVALO 2021.
3  AGUILAR-AREVALO 2013A result is based on ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$ appearance of $162.0$ $\pm47.8$ events; marginally compatible with two neutrino oscillations. The best fit value is sin$^2(2\theta )$ = 0.002.
4  ANTONELLO 2013 use the ICARUS T600 detector at LNGS and $\sim{}$20 GeV beam of ${{\mathit \nu}_{{{\mu}}}}$ from CERN 730 km away to search for an excess of ${{\mathit \nu}_{{{e}}}}$ events. Two events are found with $3.7$ $\pm0.6$ expected from conventional sources. This result excludes some parts of the parameter space expected by LSND. Superseded by ANTONELLO 2013A.
5  Based on four events with a background of $6.4$ $\pm0.9$ from conventional sources with an average energy of 20 GeV and 730 km from the source of ${{\mathit \nu}_{{{\mu}}}}$.
6  MAHN 2012 is a combined fit of MiniBooNE and SciBooNE neutrino data.
7  The limit is sin$^22\theta $ $<$ $0.9 \times 10^{-3}$ at $\Delta {{\mathit m}^{2}}_{}$ = 2 eV${}^{2}$. That value of $\Delta {{\mathit m}^{2}}_{}$ corresponds to the smallest mixing angle consistent with the reported signal from LSND in AGUILAR 2001.
8  The limit becomes sin$^22\theta $ $<$ 0.15 at $\Delta {{\mathit m}^{2}}_{}$ = $2.8 \times 10^{-3}$ eV${}^{2}$, the bets-fit value of the ${{\mathit \nu}_{{{\mu}}}}$ disappearance analysis in K2K.
9  AGUILAR 2001 is the final analysis of the LSND full data set of the search for the ${{\mathit \nu}_{{{\mu}}}}$ $\rightarrow$ ${{\mathit \nu}_{{{e}}}}$ oscillations. See footnote in preceding table for further details.
10  ATHANASSOPOULOS 1998 report ($0.26$ $\pm0.10$ $\pm0.05)\%$ for the oscillation probability; the value of sin$^22\theta $ for large $\Delta \mathit m{}^{2}$ is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate sin$^22\theta $ and $\Delta \mathit m{}^{2}$. See also ATHANASSOPOULOS 1998B.
11  LOVERRE 1996 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 1986) and CDHS (ABRAMOWICZ 1986) data from 1986.
12  VILAIN 1994C limit derived by combining the ${{\mathit \nu}_{{{\mu}}}}$ and ${{\overline{\mathit \nu}}_{{{\mu}}}}$ data assuming $\mathit CP$ conservation.
References