Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions INSPIRE search

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the graviton in the warped extra dimension model of Randall and Sundrum. Bounds in parenthesis assume Standard Model fields propagate in the bulk. Experimental bounds depend strongly on the warp parameter, $\mathit k$. See the ``Extra Dimensions'' review for a full discussion.

Here we list limits for the value of the warp parameter $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1.

VALUE (TeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{> 4.25}$ 95 1
SIRUNYAN
2018BB
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
• • • We do not use the following data for averages, fits, limits, etc. • • •
2
AAD
2020C
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
3
AABOUD
2019A
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
4
AABOUD
2019O
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
5
AAD
2019D
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
6
SIRUNYAN
2019
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
7
SIRUNYAN
2019BE
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
8
SIRUNYAN
2019CF
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
9
AABOUD
2018AK
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
10
AABOUD
2018AL
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
11
AABOUD
2018BF
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
12
AABOUD
2018BI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
13
AABOUD
2018CJ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit V}}{{\mathit V}}$ , ${{\mathit V}}{{\mathit H}}$ , ${{\mathit \ell}}{{\overline{\mathit \ell}}}$
14
AABOUD
2018CQ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
15
AABOUD
2018CW
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
16
SIRUNYAN
2018AF
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
17
SIRUNYAN
2018AS
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
18
SIRUNYAN
2018AX
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
19
SIRUNYAN
2018BK
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 1.8$ 95 20
SIRUNYAN
2018BO
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}$
21
SIRUNYAN
2018CW
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
22
SIRUNYAN
2018DJ
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 4.1$ 95 23
SIRUNYAN
2018DU
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
24
SIRUNYAN
2018F
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
25
SIRUNYAN
2018I
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
26
SIRUNYAN
2018P
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
$> 4.1$ 95 27
AABOUD
2017AP
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
28
AAD
2016R
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
29
AAD
2015AU
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
30
AAD
2015AZ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
31
AAD
2015CT
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
$> 2.68$ 95 32
AAD
2014V
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$\text{>1.23 (>0.84)}$ 95 33
AAD
2013A
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{>0.94 (>0.71)}$ 95 34
AAD
2013AO
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 2.23$ 95 35
AAD
2013AS
ATLS ${{\mathit p}}$ ${{\mathit p}}$ ${{\mathit \gamma}}$ , ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 0.845$ 95 36
AAD
2012AD
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
37
AALTONEN
2012V
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
38
BAAK
2012
RVUE Electroweak
39
AALTONEN
2011G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 1.058$ 95 40
AALTONEN
2011R
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.754$ 95 41
ABAZOV
2011H
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 0.607$ 42
AALTONEN
2010N
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 1.05$ 43
ABAZOV
2010F
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
44
AALTONEN
2008S
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 0.90$ 45
ABAZOV
2008J
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
46
AALTONEN
2007G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.889$ 47
AALTONEN
2007H
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}}{{\overline{\mathit e}}}$
$> 0.785$ 48
ABAZOV
2005N
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.71$ 49
ABULENCIA
2005A
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\overline{\mathit \ell}}}$
1  SIRUNYAN 2018BB use 35.9 (36.3) fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for dilepton resonances in the dielectron (dimuon) channel. See their paper for other limits with warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.01 and 0.05. This updates the results of KHACHATRYAN 2017T.
2  AAD 2020C use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}^{+}}{{\mathit W}^{-}}$ , and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ final states. See their Figure 5(b)(c) for limits on the cross section as a function of the KK graviton mass. In the case of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1 and 2, gravitons are excluded in the mass range $260 - 3000$ GeV and $260 - 1760$ GeV, respectively.
3  AABOUD 2019A use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1, gravitons in the mass range $313 - 1362$ GeV are excluded. This updates the results of AABOUD 2016I.
4  AABOUD 2019O use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}}$ final state. See their Figure 12 for limits on the cross section times branching fraction as a function of the KK graviton mass for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1 and $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 2.
5  AAD 2019D use 139 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for diboson resonances in the all-hadronic final state. See their Figure 9(b) for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1. This updates the results of AABOUD 2018F.
6  SIRUNYAN 2019 use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1, gravitons in the mass range $290 - 810$ GeV are excluded. This updates the result of KHACHATRYAN 2016BQ.
7  SIRUNYAN 2019BE use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production by combining the results from four final states: ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\overline{\mathit \tau}}}$ , ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ , and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit V}}{{\mathit V}}$ . See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
8  SIRUNYAN 2019CF use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit q}}{{\overline{\mathit q}}^{\,'}}{{\mathit \ell}}{{\mathit \nu}}$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1 and 0.3.
9  AABOUD 2018AK use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit W}}{{\mathit W}}$ resonances in ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}}$ final states (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 7(d) for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1. This updates the results of AABOUD 2016AE.
10  AABOUD 2018AL use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for diboson resonances in the ${{\mathit \ell}}{{\mathit \ell}}{{\mathit q}}{{\overline{\mathit q}}}$ and ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit q}}{{\overline{\mathit q}}}$ final states. See their Figure 14 for the limit on cross section times branching fraction as a function of the the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.5 and 1. This updates the results of AABOUD 2016AE.
11  AABOUD 2018BF use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit Z}}{{\mathit Z}}$ resonances in the ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \ell}}{{\mathit \ell}}$ and ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ final states (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 10 for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1.
12  AABOUD 2018BI use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for top-quark pairs decaying into the lepton-plus jets topology. See their Figure 16 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1.
13  AABOUD 2018CJ combine the searches for heavy resonances decaying into bosonic and leptonic final states from 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\sqrt {s }$ = 13 TeV. The lower limit on the KK graviton mass, with $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1, is 2.3 TeV.
14  AABOUD 2018CQ use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ final state. See their Figure 2 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 1, gravitons in the mass range $325 - 885$ GeV are excluded.
15  AABOUD 2018CW use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
16  SIRUNYAN 2018AF use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.5. This updates the results of KHACHATRYAN 2015R.
17  SIRUNYAN 2018AS use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit Z}}{{\mathit Z}}$ resonances in the ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ final state (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 5 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1, 0.5, and 1.0.
18  SIRUNYAN 2018AX use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for WW resonances in ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}}$ final states (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.5. This updates the results of KHACHATRYAN 2014A.
19  SIRUNYAN 2018BK use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit Z}}{{\mathit Z}}$ resonances in the ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit q}}{{\overline{\mathit q}}}$ final state. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.5 .
20  SIRUNYAN 2018BO use up to 36 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for dijet resonances. Besides the quoted bound, KK graviton masses between 1.9 TeV and 2.5 TeV are also excluded. See their Figure 11 for the limit on the product of the cross section, branching fraction and acceptance as a function of the KK graviton mass. This updates the results of KHACHATRYAN 2017W.
21  SIRUNYAN 2018CW use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 8 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.5.
22  SIRUNYAN 2018DJ use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit Z}}{{\mathit Z}}$ resonances in 2 ${{\mathit \ell}}$2 ${{\mathit q}}$ final states (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction. Assuming $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.5, a graviton mass is excluded below 925 GeV.
23  SIRUNYAN 2018DU use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV, in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their paper for limits with other warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.01 and 0.2. This updates the results of KHACHATRYAN 2016M.
24  SIRUNYAN 2018F use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1.
25  SIRUNYAN 2018I use 19.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to search for narrow resonances decaying to bottom quark pairs. See their Figure 3 for the limit on the KK graviton mass as a function of the cross section times branching fraction in the mass range of $325 - 1200$ GeV.
26  SIRUNYAN 2018P use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for diboson resonances with dijet final states. See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.5. This updates the results of SIRUNYAN 2017AK.
27  AABOUD 2017AP use 36.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. This updates the results of AABOUD 2016H.
28  AAD 2016R use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction.
29  AAD 2015AU use 20 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching fraction.
30  AAD 2015AZ use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching ratio.
31  AAD 2015CT use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figures 6b and 6c for the limit on the KK graviton mass as a function of the cross section times branching fraction.
32  AAD 2014V use 20.3 (20.5) fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV in the dielectron (dimuon) channels to place a lower bound on the mass of the lightest KK graviton. This updates the results of AAD 2012CC .
33  AAD 2013A use 4.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ channel, to place a lower bound on the mass of the lightest KK graviton.
34  AAD 2013AO use 4.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the ${{\mathit \ell}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ channel, to place a lower bound on the mass of the lightest KK graviton.
35  AAD 2013AS use 4.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the diphoton channel to place lower limits on the mass of the lightest KK graviton. The diphoton channel is combined with previous results in the dielectron and dimuon channels to set the best limit. See their Table 2 for warp parameter values $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1. This updates the results of AAD 2012Y .
36  AAD 2012AD use 1.02 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons in the ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). The limit is quoted for the combined ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ + ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels. See their Figure 5 for limits on the cross section ${\mathit \sigma (}$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
37  AALTONEN 2012V use 6 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons in the ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). It provides improved limits over the previous analysis in AALTONEN 2011G. See their Figure 16 for limits from all channels combined on the cross section times branching ratio ${\mathit \sigma (}$ ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}^{*}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
38  BAAK 2012 use electroweak precision observables to place a lower bound on the compactification scale $\mathit k$ $\mathit e{}^{- {{\mathit \pi}} {{\mathit k}} {{\mathit R}} }$, assuming Standard Model fields propagate in the bulk and the Higgs is confined to the IR brane. See their Fig. 27 for more details.
39  AALTONEN 2011G use $2.5 - 2.9$ fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons via the ${{\mathit e}}{{\mathit e}}{{\mathit e}}{{\mathit e}}$ , ${{\mathit e}}{{\mathit e}}{{\mathit \mu}}{{\mathit \mu}}$ , ${{\mathit \mu}}{{\mathit \mu}}{{\mathit \mu}}{{\mathit \mu}}$ , ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ channels. See their Fig. 20 for limits on the cross section ${\mathit \sigma (}$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
40  AALTONEN 2011R uses 5.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV in the dielectron channel to place a lower bound on the mass of the lightest graviton. It provides combined limits with the diphoton channel analysis of AALTONEN 2011U. For warp parameter values ${{\mathit k}}/{{\overline{\mathit M}}_{{P}}}$ between 0.01 to 0.1 the lower limit on the mass of the lightest graviton is between 612 and 1058 GeV. See their Table I for more details.
41  ABAZOV 2011H use 5.4 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton. Their 95$\%$ C.L. exclusion limit does not include masses less than 300 GeV.
42  AALTONEN 2010N use 2.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton.
43  ABAZOV 2010F use 5.4 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1 the lower limit on the mass of the lightest graviton is between 560 and 1050 GeV. See their Fig. 3 for more details.
44  AALTONEN 2008S use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to four electrons via two ${{\mathit Z}}$ bosons using 1.1 fb${}^{-1}$ of data. See their Fig. 8 for limits on $\sigma \cdot{}$B( ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$ ) versus the graviton mass.
45  ABAZOV 2008J use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons and photons using 1 fb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ between 0.01 and 0.1 the lower limit on the mass of the lightest excitation is between 300 and 900 GeV. See their Fig. 4 for more details.
46  AALTONEN 2007G use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to photons using 1.2 fb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1, 0.05, and 0.01 the bounds on the graviton mass are 850, 694, and 230 GeV, respectively. See their Fig. 3 for more details. See also AALTONEN 2007H.
47  AALTONEN 2007H use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons using 1.3 fb${}^{-1}$ of data. For a warp parameter value of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1 the bound on the graviton mass is 807 GeV. See their Fig. 4 for more details. A combined analysis with the diphoton data of AALTONEN 2007G yields for $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1 a graviton mass lower bound of 889 GeV.
48  ABAZOV 2005N use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons, electrons or photons, using 260~pb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1, 0.05, and 0.01, the bounds on the graviton mass are 785, 650 and 250$~$GeV respectively. See their Fig.$~$3 for more details.
49  ABULENCIA 2005A use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons or electrons, using 200~pb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{P}}}$ = 0.1, 0.05, and 0.01, the bounds on the graviton mass are 710, 510 and 170 GeV respectively.
  References:
AAD 2020C
PL B800 135103 Combination of searches for Higgs boson pairs in $pp$ collisions at $\sqrt{s} = $13 TeV with the ATLAS detector
AABOUD 2019A
JHEP 1901 030 Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector
AABOUD 2019O
JHEP 1904 092 Search for Higgs boson pair production in the $b\bar{b}WW^{*}$ decay mode at $\sqrt{s}=13$ TeV with the ATLAS detector
AAD 2019D
JHEP 1909 091 Search for diboson resonances in hadronic final states in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector
SIRUNYAN 2019BE
PRL 122 121803 Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s} = $ 13 TeV
SIRUNYAN 2019CF
JHEP 1910 125 Search for resonances decaying to a pair of Higgs bosons in the $\mathrm{b\overline{b}q\overline{q}'}\ell\nu$ final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV
SIRUNYAN 2019
PL B788 7 Search for Higgs boson pair production in the $\gamma\gamma\mathrm{b\overline{b}}$ final state in pp collisions at $\sqrt{s}=$ 13 TeV
AABOUD 2018BI
EPJ C78 565 Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton?proton collisions at $\sqrt{s} = 13$   $\text {TeV}$ with the ATLAS detector
AABOUD 2018CW
JHEP 1811 040 Search for Higgs boson pair production in the $\gamma\gamma b\bar{b}$ final state with 13 TeV $pp$ collision data collected by the ATLAS experiment
AABOUD 2018CQ
PRL 121 191801 Search for resonant and non-resonant Higgs boson pair production in the ${b\bar{b}\tau^+\tau^-}$ decay channel in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
AABOUD 2018CJ
PR D98 052008 Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36??fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector
AABOUD 2018AK
JHEP 1803 042 Search for $WW/WZ$ resonance production in $\ell \nu qq$ final states in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector
AABOUD 2018BF
EPJ C78 293 Search for heavy ZZ resonances in the $\ell ^+\ell ^-\ell ^+\ell ^-$ and $\ell ^+\ell ^-\nu \bar{\nu }$ final states using proton?proton collisions at $\sqrt{s}= 13$   $\text {TeV}$ with the ATLAS detector
AABOUD 2018AL
JHEP 1803 009 Searches for heavy $ZZ$ and $ZW$ resonances in the $\ell\ell qq$ and $\nu\nu qq$ final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
SIRUNYAN 2018DU
PR D98 092001 Search for physics beyond the standard model in high-mass diphoton events from proton-proton collisions at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2018F
JHEP 1801 054 Search for Resonant and Nonresonant Higgs Boson Pair Production in the ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ Final State in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
SIRUNYAN 2018AF
PL B781 244 Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV
SIRUNYAN 2018AS
JHEP 1803 003 Search for ZZ resonances in the 2$\ell$2$\nu$ final state in proton-proton collisions at 13 TeV
SIRUNYAN 2018AX
JHEP 1805 088 Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at $ \sqrt{s}=13 $ TeV
SIRUNYAN 2018BK
JHEP 1807 075 Search for a heavy resonance decaying into a Z boson and a vector boson in the $ \nu \overline{\nu}\mathrm{q}\overline{\mathrm{q}} $ final state
SIRUNYAN 2018BB
JHEP 1806 120 Search for high-mass resonances in dilepton final states in proton-proton collisions at $\sqrt{s}=$ 13 TeV
SIRUNYAN 2018BO
JHEP 1808 130 Search for narrow and broad dijet resonances in proton-proton collisions at $ \sqrt{s}=13 $ TeV and constraints on dark matter mediators and other new particles
SIRUNYAN 2018CW
JHEP 1808 152 Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV
SIRUNYAN 2018I
PRL 120 201801 Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions at $\sqrt{s} =$ 8 TeV
SIRUNYAN 2018P
PR D97 072006 Search for massive resonances decaying into $WW$, $WZ$, $ZZ$, $qW$, and $qZ$ with dijet final states at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$
SIRUNYAN 2018DJ
JHEP 1809 101 Search for a heavy resonance decaying into a Z boson and a Z or W boson in 2?2q final states at $ \sqrt{s}=13 $ TeV
AABOUD 2017AP
PL B775 105 Search for New Phenomena in High-Mass Diphoton Final States using 37 ${\mathrm {fb}}{}^{-1}$ of Proton-Proton Collisions Collected at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
AAD 2016R
PL B755 285 Combination of Searches for ${{\mathit W}}{{\mathit W}}$, ${{\mathit W}}{{\mathit Z}}$, and ${{\mathit Z}}{{\mathit Z}}$ Resonances in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015AU
EPJ C75 69 Search for Resonant Diboson Production in the ${{\mathit \ell}}{{\mathit \ell}}{\mathit {\mathit q}}{\mathit {\overline{\mathit q}}}$ Final State in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015AZ
EPJ C75 209 Search for Production of ${{\mathit W}}{{\mathit W}}/{{\mathit W}}{{\mathit Z}}$ Resonances Decaying to a Lepton, Neutrino and Jets in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015CT
JHEP 1512 055 Search for High-Mass Diboson Resonances with Boson-Tagged Jets in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2014V
PR D90 052005 Search for High-Mass Dilepton Resonances in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2013AO
PR D87 112006 Search for Resonant Diboson Production in the ${{\mathit \ell}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ Decay Channels with the ATLAS Detector at 7 TeV
AAD 2013A
PL B718 860 Search for New Phenomena in the ${{\mathit W}}$ ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}^{\,'}}{{\mathit \nu}^{\,'}}$ Final State in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
AAD 2013AS
NJP 15 043007 Search for Extra Dimensions in Diphoton Events Using Proton$−$Proton Collisions Recorded at $\sqrt {s }$ = 7 TeV with the ATLAS Detector at the LHC
AAD 2012AD
PL B712 331 Search for New Particles Decaying to ${{\mathit Z}}{{\mathit Z}}$ using Final States with Leptons and Jets with the ATLAS Detector in $\sqrt {s }$ = 7 TeV Proton$−$Proton Collisions
AALTONEN 2012V
PR D85 012008 Search for High-Mass Resonances Decaying into ${{\mathit Z}}{{\mathit Z}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
BAAK 2012
EPJ C72 2003 Updated Status of the Global Electroweak Fit and Constraints on New Physics
AALTONEN 2011G
PR D83 112008 Search for New Heavy Particles Decaying to ${{\mathit Z}}{{\mathit Z}}$ --> $\mathit llll$, $\mathit lljj$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
AALTONEN 2011R
PRL 107 051801 Search for New Dielectron Resonances and Randall-Sundrum Gravitons at the Collider Detector at Fermilab
ABAZOV 2011H
PRL 107 011801 Search for Resonant ${{\mathit W}}{{\mathit W}}$ and ${{\mathit W}}{{\mathit Z}}$ Production in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
AALTONEN 2010N
PRL 104 241801 Search for ${{\mathit W}}{{\mathit W}}$ and ${{\mathit W}}{{\mathit Z}}$ Resonances Decaying to Electron, Missing $\mathit E_{T}$, and Two Jets in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2010F
PRL 104 241802 Search for Randall-Sundrum Gravitons in the Dielectron and Diphoton Final States with 5.4 fb${}^{-1}$ of Data from ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96$~$TeV
AALTONEN 2008S
PR D78 012008 Search for New Heavy Particles Decaying to ${{\mathit Z}^{0}}$ ${{\mathit Z}^{0}}$ $\rightarrow$ ${{\mathit e}}{{\mathit e}}{{\mathit e}}{{\mathit e}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2008J
PRL 100 091802 Search for Randall-Sundrum Gravitons with 1 ${\mathrm {fb}}{}^{-1}$ of Data from ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
AALTONEN 2007H
PRL 99 171802 Search for New Physics in High-Mass Electron-Positron Events in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
AALTONEN 2007G
PRL 99 171801 Search for High-Mass Diphoton States and Limits on Randall-Sundrum Gravitons at CDF
ABAZOV 2005N
PRL 95 091801 Search for Randall-Sundrum Gravitons in Dilepton and Diphoton Final States
ABULENCIA 2005A
PRL 95 252001 Search for New High-Mass Particles Decaying to Lepton Pairs in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ =1.96 TeV