Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions

INSPIRE   PDGID:
S071RSG
This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the graviton in the warped extra dimension model of Randall and Sundrum. Bounds in parenthesis assume Standard Model fields propagate in the bulk. Experimental bounds depend strongly on the warp parameter, $\mathit k$. See the “Extra Dimensions” review for a full discussion.

Here we list limits for the value of the warp parameter $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.1.

VALUE (TeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{> 4.78}$ 95 1
SIRUNYAN
2021N
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
• • We do not use the following data for averages, fits, limits, etc. • •
2
TUMASYAN
2023AP
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
3
AAD
2022F
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
4
TUMASYAN
2022D
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
5
TUMASYAN
2022J
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
6
TUMASYAN
2022R
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
7
TUMASYAN
2022U
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
8
AAD
2021AF
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 4.5$ 95 9
AAD
2021AY
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
10
AAD
2020AT
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
11
AAD
2020C
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
12
AAD
2020T
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$> 2.6$ 95 13
SIRUNYAN
2020AI
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}$
14
SIRUNYAN
2020F
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
15
AABOUD
2019O
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
16
AAD
2019D
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$
17
SIRUNYAN
2019
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
18
SIRUNYAN
2019BE
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
19
AABOUD
2018BI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
20
AABOUD
2018CJ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit V}}{{\mathit V}},{{\mathit V}}{{\mathit H}},{{\mathit \ell}}{{\overline{\mathit \ell}}}$
21
AABOUD
2018CQ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
22
AABOUD
2018CW
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
23
SIRUNYAN
2018AF
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
24
SIRUNYAN
2018AS
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
25
SIRUNYAN
2018CW
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$
$> 4.1$ 95 26
SIRUNYAN
2018DU
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
27
SIRUNYAN
2018I
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
28
AAD
2016R
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}},{{\mathit Z}}{{\mathit Z}}$
29
AAD
2015AZ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
30
AAD
2015CP
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}},{{\mathit Z}}{{\mathit Z}}$
$> 2.68$ 95 31
AAD
2014V
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$\text{>1.23 (>0.84)}$ 95 32
AAD
2013A
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{>0.94 (>0.71)}$ 95 33
AAD
2013AO
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 2.23$ 95 34
AAD
2013AS
ATLS ${{\mathit p}}$ ${{\mathit p}}$ ${{\mathit \gamma}}$, ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 0.845$ 95 35
AAD
2012AD
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
36
AALTONEN
2012V
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
37
BAAK
2012
RVUE Electroweak
38
AALTONEN
2011G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 1.058$ 95 39
AALTONEN
2011R
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.754$ 95 40
ABAZOV
2011H
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 0.607$ 41
AALTONEN
2010N
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 1.05$ 42
ABAZOV
2010F
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
43
AALTONEN
2008S
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$> 0.90$ 44
ABAZOV
2008J
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \gamma}}{{\mathit \gamma}}$
45
AALTONEN
2007G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.889$ 46
AALTONEN
2007H
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit e}}{{\overline{\mathit e}}}$
$> 0.785$ 47
ABAZOV
2005N
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$, ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 0.71$ 48
ABULENCIA
2005A
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit \ell}}{{\overline{\mathit \ell}}}$
1  SIRUNYAN 2021N use 137 (140) fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for dilepton resonances in the dielectron (dimuon) channel. See Table 6 for other limits with warp parameter values $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.01 and 0.05. This updates the results of SIRUNYAN 2018BB.
2  TUMASYAN 2023AP use 138 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit Z}}$ diboson resonances in ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ final states. See their Figure 7 for the limit on the cross section times branching fraction as a function of the KK graviton mass. Assuming $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.5, a graviton mass is excluded below 1400 GeV. This updates the result of SIRUNYAN 2020Q.
3  AAD 2022F use $126 - 139$ fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 14 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1, gravitons in the mass range $298 - 1460$ GeV are excluded. This updates the results of AABOUD 2019A.
4  TUMASYAN 2022D use 137 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit W}}{{\mathit W}}$ resonances in ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}}$ final states (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.5. This updates the results of SIRUNYAN 2018AX.
5  TUMASYAN 2022J use 137 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit Z}}{{\mathit Z}}$ resonances in the ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit q}}{{\overline{\mathit q}}}$ final state. See their Figure 10 for the limit on the KK graviton mass as a function of the cross section times branching fraction, assuming $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.5 . This updates the result of SIRUNYAN 2018BK.
6  TUMASYAN 2022R use 138 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit Z}}{{\mathit Z}}$ resonances in 2 ${{\mathit \ell}}$2 ${{\mathit q}}$ final states (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 8 for the limit on the KK graviton mass as a function of the cross section times branching fraction. Assuming $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.5, a graviton mass is excluded below 1200 GeV. This updates the result of SIRUNYAN 2018DJ.
7  TUMASYAN 2022U use 138 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit q}}{{\overline{\mathit q}}^{\,'}}{{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \nu}}$ final states (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.3 and 0.5. This updates the results of SIRUNYAN 2019CF and SIRUNYAN 2018F.
8  AAD 2021AF use 139 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit Z}}{{\mathit Z}}$ resonances in the ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \ell}}{{\mathit \ell}}$ and ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ final states (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 8 for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1. This updates the results of AAD 2015AU and AABOUD 2018BF.
9  AAD 2021AY use 139 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. This updates the results of AABOUD 2017AP.
10  AAD 2020AT use 139 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for diboson resonances in semileptonic final states (${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}},{{\mathit \ell}}{{\mathit \ell}}{{\mathit q}}{{\mathit q}}$, ${{\mathit \nu}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}}$). See their Figure 15 for the limit on the cross section times branching fraction as a function of the KK graviton mass. Lower limits on the graviton mass are also given for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1. This updates the results of AABOUD 2018AK and AABOUD 2018AL.
11  AAD 2020C use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}^{+}}{{\mathit W}^{-}}$, and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ final states. See their Figure 5(b)(c) for limits on the cross section as a function of the KK graviton mass. In the case of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1 and 2, gravitons are excluded in the mass range $260 - 3000$ GeV and $260 - 1760$ GeV, respectively.
12  AAD 2020T use 139 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for narrow resonances decaying to bottom quark pairs. See their Figure 7 for the limit on the product of the cross section, branching fraction, acceptance and ${{\mathit b}}$-tagging efficiency as a function of the KK graviton mass. In the case of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.2, KK gravitons in the mass range $1.25 - 2.8$ TeV are excluded.
13  SIRUNYAN 2020AI use 137 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for dijet resonances. See their Figure 6 for the limit on the product of the cross section, branching fraction and acceptance as a function of the KK graviton mass. This updates the results of SIRUNYAN 2018BO.
14  SIRUNYAN 2020F use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}}$ final state. See their Figure 4 for limits on the cross section times branching fraction as a function of the KK graviton mass, and Figure 5 for limits as a function of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$.
15  AABOUD 2019O use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}}$ final state. See their Figure 12 for limits on the cross section times branching fraction as a function of the KK graviton mass for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1 and $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 2.
16  AAD 2019D use 139 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for diboson resonances in the all-hadronic final state. See their Figure 9(b) for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1. This updates the results of AABOUD 2018F.
17  SIRUNYAN 2019 use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1, gravitons in the mass range $290 - 810$ GeV are excluded. This updates the result of KHACHATRYAN 2016BQ.
18  SIRUNYAN 2019BE use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production by combining the results from four final states: ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\overline{\mathit \tau}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit V}}{{\mathit V}}$. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
19  AABOUD 2018BI use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for top-quark pairs decaying into the lepton-plus jets topology. See their Figure 16 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1.
20  AABOUD 2018CJ combine the searches for heavy resonances decaying into bosonic and leptonic final states from 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\sqrt {s }$ = 13 TeV. The lower limit on the KK graviton mass, with $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1, is 2.3 TeV.
21  AABOUD 2018CQ use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ final state. See their Figure 2 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 1, gravitons in the mass range $325 - 885$ GeV are excluded.
22  AABOUD 2018CW use 36.1 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
23  SIRUNYAN 2018AF use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.5. This updates the results of KHACHATRYAN 2015R.
24  SIRUNYAN 2018AS use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for ${{\mathit Z}}{{\mathit Z}}$ resonances in the ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ final state (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). See their Figure 5 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.1, 0.5, and 1.0.
25  SIRUNYAN 2018CW use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to search for Higgs boson pair production in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state. See their Figure 8 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.5.
26  SIRUNYAN 2018DU use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV, in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their paper for limits with other warp parameter values $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.01 and 0.2. This updates the results of KHACHATRYAN 2016M.
27  SIRUNYAN 2018I use 19.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to search for narrow resonances decaying to bottom quark pairs. See their Figure 3 for the limit on the KK graviton mass as a function of the cross section times branching fraction in the mass range of $325 - 1200$ GeV.
28  AAD 2016R use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction.
29  AAD 2015AZ use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching ratio.
30  AAD 2015CP use 20.3 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV to place a lower bound on the mass of the lightest KK graviton. See their Figures 6b and 6c for the limit on the KK graviton mass as a function of the cross section times branching fraction.
31  AAD 2014V use 20.3 (20.5) fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV in the dielectron (dimuon) channels to place a lower bound on the mass of the lightest KK graviton. This updates the results of AAD 2012CC .
32  AAD 2013A use 4.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ channel, to place a lower bound on the mass of the lightest KK graviton.
33  AAD 2013AO use 4.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the ${{\mathit \ell}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ channel, to place a lower bound on the mass of the lightest KK graviton.
34  AAD 2013AS use 4.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the diphoton channel to place lower limits on the mass of the lightest KK graviton. The diphoton channel is combined with previous results in the dielectron and dimuon channels to set the best limit. See their Table 2 for warp parameter values $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ between 0.01 and 0.1. This updates the results of AAD 2012Y .
35  AAD 2012AD use 1.02 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons in the ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). The limit is quoted for the combined ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ + ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels. See their Figure 5 for limits on the cross section ${\mathit \sigma (}$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
36  AALTONEN 2012V use 6 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons in the ${{\mathit l}}{{\mathit l}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit l}}{{\mathit l}}{{\mathit l}}{{\mathit l}}$ channels (${{\mathit \ell}}={{\mathit e}}$, ${{\mathit \mu}}$). It provides improved limits over the previous analysis in AALTONEN 2011G. See their Figure 16 for limits from all channels combined on the cross section times branching ratio ${\mathit \sigma (}$ ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit G}^{*}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
37  BAAK 2012 use electroweak precision observables to place a lower bound on the compactification scale $\mathit k$ $\mathit e{}^{-{{\mathit \pi}} {{\mathit k}} {{\mathit R}}}$, assuming Standard Model fields propagate in the bulk and the Higgs is confined to the IR brane. See their Fig. 27 for more details.
38  AALTONEN 2011G use $2.5 - 2.9$ fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in a warped extra dimension decaying to ${{\mathit Z}}{{\mathit Z}}$ dibosons via the ${{\mathit e}}{{\mathit e}}{{\mathit e}}{{\mathit e}}$, ${{\mathit e}}{{\mathit e}}{{\mathit \mu}}{{\mathit \mu}}$, ${{\mathit \mu}}{{\mathit \mu}}{{\mathit \mu}}{{\mathit \mu}}$, ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$, and ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ channels. See their Fig. 20 for limits on the cross section ${\mathit \sigma (}$ ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}{)}$ as a function of the graviton mass.
39  AALTONEN 2011R uses 5.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV in the dielectron channel to place a lower bound on the mass of the lightest graviton. It provides combined limits with the diphoton channel analysis of AALTONEN 2011U. For warp parameter values ${{\mathit k}}/{{\overline{\mathit M}}_{{{P}}}}$ between 0.01 to 0.1 the lower limit on the mass of the lightest graviton is between 612 and 1058 GeV. See their Table I for more details.
40  ABAZOV 2011H use 5.4 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton. Their 95$\%$ C.L. exclusion limit does not include masses less than 300 GeV.
41  AALTONEN 2010N use 2.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton.
42  ABAZOV 2010F use 5.4 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place a lower bound on the mass of the lightest graviton. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ between 0.01 and 0.1 the lower limit on the mass of the lightest graviton is between 560 and 1050 GeV. See their Fig. 3 for more details.
43  AALTONEN 2008S use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to four electrons via two ${{\mathit Z}}$ bosons using 1.1 fb${}^{-1}$ of data. See their Fig. 8 for limits on $\sigma \cdot{}$B( ${{\mathit G}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$) versus the graviton mass.
44  ABAZOV 2008J use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons and photons using 1 fb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ between 0.01 and 0.1 the lower limit on the mass of the lightest excitation is between 300 and 900 GeV. See their Fig. 4 for more details.
45  AALTONEN 2007G use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to photons using 1.2 fb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.1, 0.05, and 0.01 the bounds on the graviton mass are 850, 694, and 230 GeV, respectively. See their Fig. 3 for more details. See also AALTONEN 2007H.
46  AALTONEN 2007H use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons using 1.3 fb${}^{-1}$ of data. For a warp parameter value of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.1 the bound on the graviton mass is 807 GeV. See their Fig. 4 for more details. A combined analysis with the diphoton data of AALTONEN 2007G yields for $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.1 a graviton mass lower bound of 889 GeV.
47  ABAZOV 2005N use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons, electrons or photons, using 260~pb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.1, 0.05, and 0.01, the bounds on the graviton mass are 785, 650 and 250$~$GeV respectively. See their Fig.$~$3 for more details.
48  ABULENCIA 2005A use ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons or electrons, using 200~pb${}^{-1}$ of data. For warp parameter values of $\mathit k/{{\overline{\mathit M}}_{{{P}}}}$ = 0.1, 0.05, and 0.01, the bounds on the graviton mass are 710, 510 and 170 GeV respectively.
References