• • • We do not use the following data for averages, fits, limits, etc. • • • |
$
\text{< 2.2 - 2.6}
$
|
90
|
$<$ $1.7 - 2.1$
|
90
|
${}^{82}\mathrm {Se}$
|
NEMO-3
|
1 |
|
$
\text{< 1.8 - 22}
$
|
90
|
$<$ $1.6 - 21$
|
90
|
${}^{116}\mathrm {Cd}$
|
AURORA
|
2 |
|
$
\text{<0.9 - 1.3}
$
|
90
|
$<0.5 - 0.8$
|
90
|
${}^{100}\mathrm {Mo}$
|
NEMO-3
|
3 |
|
$
<120
$
|
90
|
|
|
${}^{100}\mathrm {Mo}$
|
$0{}^{+} \rightarrow 2{}^{+}$
|
4 |
|
$
0.692 {}^{+0.058}_{-0.056}
$
|
68
|
$0.305$ ${}^{+0.026}_{-0.025}$
|
68
|
${}^{76}\mathrm {Ge}$
|
Enriched ${}^{}\mathrm {HPGe}$
|
5 |
|
$
<2.5
$
|
90
|
|
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}$, NEMO-3
|
6 |
|
$
<3.8
$
|
90
|
|
|
${}^{82}\mathrm {Se}$
|
0${{\mathit \nu}}$, NEMO-3
|
7 |
|
$
\text{<1.5 - 2.0}
$
|
90
|
|
|
${}^{100}\mathrm {Mo}$
|
0${{\mathit \nu}}$, NEMO-3
|
8 |
|
$
\text{< 3.2 - 3.8}
$
|
90
|
|
|
${}^{82}\mathrm {Se}$
|
0${{\mathit \nu}}$, NEMO-3
|
9 |
|
$
\text{<1.6 - 2.4}
$
|
90
|
$<0.9 - 5.3$
|
90
|
${}^{130}\mathrm {Te}$
|
Cryog. det.
|
10 |
|
$
<2.2
$
|
90
|
<2.5
|
90
|
${}^{116}\mathrm {Cd}$
|
${}^{116}\mathrm {Cd}WO_{4}$ scint.
|
11 |
|
$
\text{<3.2 - 4.7}
$
|
90
|
$<2.4 - 2.7$
|
90
|
${}^{100}\mathrm {Mo}$
|
ELEGANT V
|
12 |
|
$
<1.1
$
|
90
|
<0.64
|
90
|
${}^{76}\mathrm {Ge}$
|
Enriched HPGe
|
13 |
|
$
<4.4
$
|
90
|
<2.3
|
90
|
${}^{136}\mathrm {Xe}$
|
TPC
|
14 |
|
$
$
|
|
<5.3
|
|
${}^{128}\mathrm {Te}$
|
Geochem
|
15 |
|
1
ARNOLD 2018 use the NEMO03 tracking detector, with 0.93 kg of ${}^{82}\mathrm {Se}$ mass and 5.25 y exposure to obtain the limits for the hypothetical right-handed currents. Supersedes ARNOLD 2005A.
|
2
BARABASH 2018 use 1.162 kg of ${}^{116}\mathrm {Cd}WO_{4}$ scintillating crystals to obtain this limits for the hypothetical right-handed currents in the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{116}\mathrm {Cd}$.
|
3
ARNOLD 2014 is based on 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter. The reported range limit on $\langle \lambda \rangle $ and $\langle \eta \rangle $ reflects the nuclear matrix element uncertainty in ${}^{100}\mathrm {Mo}$.
|
4
ARNOLD 2007 use NEMO-3 half life limit for 0${{\mathit \nu}}$-decay of ${}^{100}\mathrm {Mo}$ to the first excited 2${}^{+}$-state of daughter nucleus to limit the right-right handed admixture of weak currents $\langle \lambda \rangle $. This limit is not competitive when compared to the decay to the ground state.
|
5
Re-analysis of data originally published in KLAPDOR-KLEINGROTHAUS 2004A. Modified pulse shape analysis leads the authors to claim 6$\sigma $ statistical evidence for observation of 0${{\mathit \nu}}$-decay. Authors use matrix element of MUTO 1989 to determine $\langle \lambda \rangle $ and $\langle \eta \rangle $. Uncertainty of nuclear matrix element is not reflected in stated errors.
|
6
ARNOLD 2005A derive limit for $\langle {{\mathit \lambda}}\rangle $ based on ${}^{100}\mathrm {Mo}$ data collected with NEMO-3 detector. No limit for $\langle {{\mathit \eta}}\rangle $ is given. Supersedes ARNOLD 2004 .
|
7
ARNOLD 2005A derive limit for $\langle {{\mathit \lambda}}\rangle $ based on ${}^{82}\mathrm {Se}$ data collected with NEMO-3 detector. No limit for $\langle {{\mathit \eta}}\rangle $ is given. Supersedes ARNOLD 2004 .
|
8
ARNOLD 2004 use the matrix elements of SUHONEN 1994 to obtain a limit for $\langle {{\mathit \lambda}}\rangle $, no limit for $\langle {{\mathit \eta}}\rangle $ is given. This limit is more stringent than the limit in EJIRI 2001 for the same nucleus.
|
9
ARNOLD 2004 use the matrix elements of TOMODA 1991 and SUHONEN 1991 to obtain a limit for $\langle {{\mathit \lambda}}\rangle $, no limit for $\langle {{\mathit \eta}}\rangle $ is given.
|
10
Supersedes ALESSANDRELLO 2000 . Cryogenic calorimeter search. Reported a range reflecting uncertainty in nuclear matrix element calculations.
|
11
Limits for $\langle {{\mathit \lambda}}\rangle $ and $\langle {{\mathit \eta}}\rangle $ are based on nuclear matrix elements of STAUDT 1990 . Supersedes DANEVICH 2000 .
|
12
The range of the reported $\langle {{\mathit \lambda}}\rangle $ and $\langle {{\mathit \eta}}\rangle $ values reflects the spread of the nuclear matrix elements. On axis value assuming $\langle {\mathit m}_{{{\mathit \nu}}}\rangle $=0 and $\langle {{\mathit \lambda}}\rangle =\langle {{\mathit \eta}}\rangle $=0, respectively.
|
13
GUENTHER 1997 limits use the matrix elements of STAUDT 1990 . Supersedes BALYSH 1995 and BALYSH 1992 .
|
14
VUILLEUMIER 1993 uses the matrix elements of MUTO 1989 . Based on a half-life limit $2.6 \times 10^{23}~$y at 90$\%$CL.
|
15
BERNATOWICZ 1992 takes the measured geochemical decay width as a limit on the 0${{\mathit \nu}}$ width, and uses the SUHONEN 1991 coefficients to obtain the least restrictive limit on ${{\mathit \eta}}$. Further details of the experiment are given in BERNATOWICZ 1993 .
|