Half-life 0${{\mathit \nu}}$ double-$\beta $ decay

INSPIRE   PDGID:
S076H0N
In most cases the transitions (Z,A)$~\rightarrow~$(Z+2,A) $+~2{{\mathit e}^{-}}$ to the 0${}^{+}$ ground state of the final nucleus are listed. We also list transitions that decrease the nuclear charge (2${{\mathit e}^{+}}$, ${{\mathit e}^{+}}$ CC and double EC) and transitions to an excited state of the final nucleus (0${}^{+}_{i}$, 2${}^{+}$, and 2${}^{+}_{i}$). In the following Listings only the best or comparable limits for the half-lives of each transition are reported and only those with about T$_{1/2}>10^{23}$ years that are relevant for particle physics.

${\mathrm {\mathit t_{1/2}}}$ ($ 10^{23} $ yr) CL$\%$ ISOTOPE TRANSITION METHOD DOCUMENT ID
• • We do not use the following data for averages, fits, limits, etc. • •
$ >2300 $ $90$ ${}^{136}\mathrm {Xe}$ KamLAND-Zen 1
ABE
2023
$ >830 $ $90$ ${}^{76}\mathrm {Ge}$ MAJORANA 2
ARNQUIST
2023
$ >2.1 $ $90$ ${}^{100}\mathrm {Mo}$ $g.s. \rightarrow2{}^{+}_{1}$ CUPID-Mo 3
AUGIER
2023
$ >1.2 $ $90$ ${}^{100}\mathrm {Mo}$ $g.s. \rightarrow0{}^{+}_{1}$ CUPID-Mo 3
AUGIER
2023
$ >13 $ $90$ ${}^{136}\mathrm {Xe}$ NEXT 4
NOVELLA
2023
$ >220 $ $90$ ${}^{130}\mathrm {Te}$ CUORE 5
ADAMS
2022A
$ >36 $ $90$ ${}^{128}\mathrm {Te}$ CUORE 6
ADAMS
2022B
$ >12 $ $90$ ${}^{136}\mathrm {Xe}$ XENON1T 7
APRILE
2022A
$ >18 $ $90$ ${}^{100}\mathrm {Mo}$ CUPID-Mo 8
AUGIER
2022
$ >46 $ $90$ ${}^{82}\mathrm {Se}$ CUPID-0 9
AZZOLINI
2022
$ >1.8 $ $90$ ${}^{82}\mathrm {Se}$ $g.s. \rightarrow0{}^{+}_{1}$ CUPID-0 10
AZZOLINI
2022
$ >3.0 $ $90$ ${}^{82}\mathrm {Se}$ $g.s. \rightarrow2{}^{+}_{1}$ CUPID-0 11
AZZOLINI
2022
$ >3.2 $ $90$ ${}^{82}\mathrm {Se}$ $g.s. \rightarrow2{}^{+}_{2}$ CUPID-0 12
AZZOLINI
2022
$ >59 $ $90$ ${}^{130}\mathrm {Te}$ $g.s. \rightarrow0{}^{+}_{1}$ CUORE 13
ADAMS
2021A
$ >15 $ $90$ ${}^{100}\mathrm {Mo}$ CUPID-Mo 14
ARMENGAUD
2021
$ >39.9 $ $90$ ${}^{76}\mathrm {Ge}$ $g.s. \rightarrow0{}^{+}_{1}$ MAJORANA-Dem 15
ARNQUIST
2021
$ >21.2 $ $90$ ${}^{76}\mathrm {Ge}$ $g.s. \rightarrow2{}^{+}_{1}$ MAJORANA-Dem 16
ARNQUIST
2021
$ >9.7 $ $90$ ${}^{76}\mathrm {Ge}$ $g.s. \rightarrow2{}^{+}_{2}$ MAJORANA-Dem 17
ARNQUIST
2021
$ >320 $ $90$ ${}^{130}\mathrm {Te}$ CUORE 18
ADAMS
2020A
$ >1800 $ $90$ ${}^{76}\mathrm {Ge}$ GERDA 19
AGOSTINI
2020B
$ >14 $ $90$ ${}^{130}\mathrm {Te}$ $g.s. \rightarrow0{}^{+}_{1}$ CUORE-0 20
ALDUINO
2019
$ >0.95 $ $90$ ${}^{100}\mathrm {Mo}$ AMoRE 21
ALENKOV
2019
$ >350 $ $90$ ${}^{136}\mathrm {Xe}$ EXO-200 22
ANTON
2019
$ >2.4 $ $90$ ${}^{136}\mathrm {Xe}$ PANDAX-II 23
NI
2019
$ >150 $ $90$ ${}^{130}\mathrm {Te}$ CUORE 24
ALDUINO
2018
$ >2.5 $ $90$ ${}^{82}\mathrm {Se}$ NEMO-3 25
ARNOLD
2018
$ >2.2 $ $90$ ${}^{116}\mathrm {Cd}$ AURORA 26
BARABASH
2018
$ >1.1 $ $90$ ${}^{134}\mathrm {Xe}$ EXO-200 27
ALBERT
2017C
$ >1 $ $90$ ${}^{116}\mathrm {Cd}$ NEMO-3 28
ARNOLD
2017
$ >40 $ $90$ ${}^{130}\mathrm {Te}$ CUORICINO 29
ALDUINO
2016
$ >260 $ $90$ ${}^{136}\mathrm {Xe}$ $g.s.\rightarrow2{}^{+}_{1}$ KamLAND-Zen 30
ASAKURA
2016
$ >260 $ $90$ ${}^{136}\mathrm {Xe}$ $g.s.\rightarrow2{}^{+}_{2}$ KamLAND-Zen 31
ASAKURA
2016
$ >240 $ $90$ ${}^{136}\mathrm {Xe}$ $g.s.\rightarrow0{}^{+}_{1}$ KamLAND-Zen 32
ASAKURA
2016
$ >11 $ $90$ ${}^{100}\mathrm {Mo}$ NEMO-3 33
ARNOLD
2015
$ >9.4 $ $90$ ${}^{130}\mathrm {Te}$ $g.s. \rightarrow 0{}^{+}_{1}$ CUORICINO 34
ANDREOTTI
2012
$ >0.58 $ $90$ ${}^{48}\mathrm {Ca}$ CaF$_{2}$ scint. 35
UMEHARA
2008
$ >0.89 $ $90$ ${}^{100}\mathrm {Mo}$ $g.s. \rightarrow 0{}^{+}_{1}$ NEMO-3 36
ARNOLD
2007
$ >1.6 $ $90$ ${}^{100}\mathrm {Mo}$ $g.s. \rightarrow 2{}^{+}$ NEMO-3 37
ARNOLD
2007
$ >1.1 $ $90$ ${}^{128}\mathrm {Te}$ Cryog. det. 38
ARNABOLDI
2003
$ >1.7 $ $90$ ${}^{116}\mathrm {Cd}$ ${}^{116}\mathrm {Cd}WO_{4}$ scint. 39
DANEVICH
2003
$ >157 $ $90$ ${}^{76}\mathrm {Ge}$ Enriched HPGe 40
AALSETH
2002B
1  ABE 2023 use the combined data set of the KamLAND-Zen 400 and 800 experiments, utilizing 745 kg of isotopically enriched xenon (90.9$\%$ ${}^{136}\mathrm {Xe}$), dissolved in liquid scintillator and an exposure of 970 kg$\cdot{}$yr of ${}^{136}\mathrm {Xe}$, to derive this limit on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay. A half-life sensitivity of $1.5 \times 10^{26}$ yr is reported.
2  ARNQUIST 2023 use the final data set of the MAJORANA DEMONSTRATOR experiment, operating enriched in ${}^{76}\mathrm {Ge}$ detectors, to set this limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{76}\mathrm {Ge}$. The exposure is 64.5 kg$\cdot{}$yr. A median sensitivity of $8.1 \times 10^{25}$ yr is reported.
3  AUGIER 2023 utilize the complete data, set collected by the CUPID-Mo bolometric calorimeter with particle ID and located at the LSM, to study various double beta decays of ${}^{100}\mathrm {Mo}$ to excited states of the daughter nucleus. An exposure of 1.47 kg$\cdot{}$yr of ${}^{100}\mathrm {Mo}$ is available.
4  NOVELLA 2023 use data collected by the NEXT-White experiment to limit the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{136}\mathrm {Xe}$. The experiment contains 3.5 kg of enriched Xe and is based on a high-pressure gas TPC. Two different limits are reported, based on different data analysis approaches, $>$ $5.5 \times 10^{23}$ yr and $>$ $13 \times 10^{23}$ yr.
5  ADAMS 2022A use the CUORE TeO$_{2}$ experiment with an exposure of 288.8 kg$\cdot{}$yr of ${}^{130}\mathrm {Te}$ to place a limit on its 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay. The median sensitivity is reported as $280 \times 10^{23}$ yr. Superseeds ADAMS 2020A.
6  ADAMS 2022B use the CUORE bolometric calorimeter to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay half-life of ${}^{128}\mathrm {Te}$.
7  APRILE 2022A use 36.16 kg$\cdot{}$yr of ${}^{136}\mathrm {Xe}$ exposure of the XENON1T not enriched detector to establish the stated limit.
8  AUGIER 2022 use the final data set of the CUPID-Mo cryogenic calorimeter, utilizing enriched Li$_{2}{}^{100}\mathrm {Mo}{}^{}\mathrm {O}_{4}$ and an isotope exposure of 1.47 kg$\cdot{}$y, to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay half-life.
9  AZZOLINI 2022 use the CUPID-0 scintillating cryogenic bolometer to set a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{82}\mathrm {Se}$. The analyzed isotope exposure is 8.82 kg$\cdot{}$yr. A median sensitivity of $7 \times 10^{24}$ yr is reported. Supersedes AZZOLINI 2019.
10  AZZOLINI 2022 use CUPID-0 data with an isotope exposure of 8.82 kg$\cdot{}$yr to set a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the first excited 0${}^{+}$ state.
11  AZZOLINI 2022 use CUPID-0 data with an isotope exposure of 8.82 kg$\cdot{}$yr to set a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the first excited 2${}^{+}$ state.
12  AZZOLINI 2022 use CUPID-0 data with an isotope exposure of 8.82 kg$\cdot{}$yr to set a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the second excited 2${}^{+}$ state.
13  ADAMS 2021A et al. used 101.76 kg yr of ${}^{130}\mathrm {Te}$ exposure of the CUORE (LNGS) bolometric detector to place a limit on the decay to the first excited state of ${}^{130}\mathrm {Xe}$, superseding ALDUINO 2019 as the most restrictive bound on this particular decay.
14  ARMENGAUD 2021 use the CUPID-Mo 4.2 kg array of enriched Li$_{2}{}^{100}\mathrm {Mo}O_{4}$ scintillating bolometers, with 1.17 kg$\cdot{}$yr exposure, to set this limit.
15  ARNQUIST 2021 use the MAJORANA demonstrator to set this limit for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the first excited 0${}^{+}$ state, with a 41.9 kg yr isotopic exposure. The median sensitivity is $39.9 \times 10^{23}$ yr.
16  ARNQUIST 2021 use the MAJORANA demonstrator to set this limit for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the first excited 2${}^{+}$ state, with a 41.9 kg yr isotopic exposure. The median sensitivity is $21.2 \times 10^{23}$ yr.
17  ARNQUIST 2021 use the MAJORANA demonstrator to set this limit for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the second excited 2${}^{+}$ state, with a 41.9 kg yr isotopic exposure. The median sensitivity is $18.6 \times 10^{23}$ yr.
18  ADAMS 2020A use the CUORE detector to search for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$. The exposure was 372.5 kg$\cdot{}$yr of TeO$_{2}$ corresponding to 103.6 kg$\cdot{}$yr of ${}^{130}\mathrm {Te}$. The exclusion sensitivity is $1.7 \times 10^{25}$yr. Supersedes ALDUINO 2018.
19  AGOSTINI 2020B present the final data set of the GERDA experiment, searching for 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{76}\mathrm {Ge}$ with isotopically enriched, high resolution ${}^{}\mathrm {Ge}$ detectors. A final exposure of 127.2 kg$\cdot{}$yr is reported. The experiment reports the lowest background and longest half life limit ever achieved by any double beta decay experiment. The reported experiment sensitivity equals the limit. Supersedes AGOSTINI 2019.
20  ALDUINO 2019 use the combined data of the CUORICINO and CUORE-0 experiments to place a lower limit on the half life of the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$ to the first excited 0${}^{+}$ state of ${}^{130}\mathrm {Xe}$. Supersedes ANDREOTTI 2012.
21  ALENKOV 2019 report the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay half-life limit based on the 52.1 kg$\cdot{}$d exposure of ${}^{100}\mathrm {Mo}$, of a a cryogenic dual heat and light detector in the Yangyang underground laboratory. The median sensitivity is $1.1 \times 10^{23}$ years.
22  ANTON 2019 uses he complete dataset of the EXO-200 detector to search for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay. The exposure is 234.1 kg yr. The median sensitivity is $5.0 \times 10^{25}$ yr. Supersedes ALBERT 2018 and ALBERT 2014B.
23  NI 2019 use the PandaX-II dual phase TPC at CJPL to search for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{136}\mathrm {Xe}$. The half-life limit $2.4 \times 10^{23}$ yr is obtained from 22.2 kg yr exposure with a sensitivity of $1.9 \times 10^{23}$ yr.
24  ALDUINO 2018 uses the CUORE detector to search for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$. The exposure is 86.3 kg$\cdot{}$year of natural TeO$_{2}$ corresponding to 24.0 kg$\cdot{}$year for ${}^{130}\mathrm {Te}$. The median sensitivity is $0.7 \times 10^{25}$ yr. The limit is obtained combining the new data from CUORE with those of CUORE0 (9.8 kg$\cdot{}$year of ${}^{130}\mathrm {Te}$) and Cuoricino (19.8 kg$\cdot{}$year of ${}^{130}\mathrm {Te}$).
25  ARNOLD 2018 use the NEMO-3 tracking detector to place a limit on the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{82}\mathrm {Se}$. This is a slightly weaker limit than in BARABASH 2011A, using the same detector. Supersedes ARNOLD 2005A.
26  BARABASH 2018 use 1.162 kg of ${}^{116}\mathrm {Cd}WO_{4}$ scintillating crystals to obtain this limit. Supersedes DANEVICH 2003 with analogous source and is more sensitive than ARNOLD 2017.
27  ALBERT 2017C uses the EXO-200 detector that contains $19.098$ $\pm0.014\%$ admixture of ${}^{134}\mathrm {Xe}$ to search for the 0${{\mathit \nu}}$ and 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay modes. The exposure is 29.6 kg$\cdot{}$year. The median sensitivity is $1.9 \times 10^{21}$ years.
28  ARNOLD 2017 use the NEMO-3 tracking calorimeter, containing 410 g of enriched ${}^{116}\mathrm {Cd}$ exposed for 5.26 yr, to determine the half-life limit. Supersedes BARABASH 2011A.
29  ALDUINO 2016 report result obtained with 9.8 kg$\cdot{}$y of data collected with the CUORE-0 bolometer, combined with data from the CUORICINO. Supersedes ALFONSO 2015.
30  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the first excited state of the daughter nuclide.
31  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the second excited state of the daughter nuclide.
32  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the third excited state of the daughter nuclide.
33  ARNOLD 2015 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the limit of 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$. Supersedes {ARNOLD 2005A} and BARABASH 2011A.
34  ANDREOTTI 2012 use high resolution TeO$_{2}$ bolometric calorimeter to search for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$ leading to the excited 0${}^{1}_{+}$ state at 1793.5 keV.
35  UMEHARA 2008 use CaF$_{2}$ scintillation calorimeter to search for double beta decay of ${}^{48}\mathrm {Ca}$. Limit is significantly more stringent than quoted sensitivity: $18 \times 10^{21}$ years.
36  Limit on 0${{\mathit \nu}}$-decay to the first excited 0${}^{+}_{1}$-state of daughter nucleus using NEMO-3 tracking calorimeter. Supersedes DASSIE 1995.
37  Limit on 0${{\mathit \nu}}$-decay to the first excited 2${}^{+}$-state of daughter nucleus using NEMO-3 tracking calorimeter.
38  Supersedes ALESSANDRELLO 2000. Array of TeO$_{2}$ crystals in high resolution cryogenic calorimeter. Some enriched in ${}^{128}\mathrm {Te}$. Ground state to ground state decay.
39  Limit on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{116}\mathrm {Cd}$ using enriched CdWO$_{4}$ scintillators. Supersedes DANEVICH 2000.
40  AALSETH 2002B limit is based on 117 mol$\cdot{}$yr of data using enriched Ge detectors. Background reduction by means of pulse shape analysis is applied to part of the data set. Reported limit is slightly less restrictive than that in KLAPDOR-KLEINGROTHAUS 2001 However, it excludes part of the allowed half-life range reported in KLAPDOR-KLEINGROTHAUS 2001B for the same nuclide. The analysis has been criticized in KLAPDOR-KLEINGROTHAUS 2004B. The criticism was addressed and disputed in AALSETH 2004.
References