$\langle{}{\mathit m}_{\mathrm {ee}}\rangle{}$, The Effective Weighted Sum of Majorana Neutrino Masses Contributing to Neutrinoless Double-$\beta $ Decay

INSPIRE   PDGID:
S076MW


$\langle{}{\mathit m}_{\mathrm {ee}}\rangle{}$ = $\vert \Sigma \mathit U{}^{ 2}_{ ei}{\mathit m}_{{{\mathit \nu}_{{{i}}}}}\vert $, $\mathit i$ = 1,2,3. It is assumed that ${{\mathit \nu}_{{{i}}}}$ are Majorana particles and that the transition is dominated by the known (light) neutrinos. Note that $\mathit U{}^{ 2}_{ ei}$ and not $\vert \mathit U_{ei}\vert ^2$ occur in the sum, and that consequently cancellations are possible. The experiments obtain the limits on $\langle{}{\mathit m}_{{{\mathit \nu}}}\rangle{}$ from the measured ones on ${{\mathit T}_{{{1/2}}}}$ using a range of nuclear matrix elements (NME), which is reflected in the spread of $\langle{}{\mathit m}_{{{\mathit \nu}}}\rangle{}$. Different experiments may choose different NME. All assume ${{\mathit g}_{{{A}}}}$ = 1.27. In the following Listings, only the best or comparable limits for each isotope are reported. When not mentioned explicitly the transition is between ground states, but transitions between excited states are also reported.

$\mathit VALUE$ (eV) ISOTOPE METHOD DOCUMENT ID
• • We do not use the following data for averages, fits, limits, etc. • •
$ \text{<0.036 - 0.156} $ ${}^{136}\mathrm {Xe}$ KamLAND-Zen 1
ABE
2023
$ \text{<0.113 - 0.269} $ ${}^{76}\mathrm {Ge}$ MAJORANA 2
ARNQUIST
2023
$ \text{<0.48 - 3.19} $ ${}^{136}\mathrm {Xe}$ NEXT 3
NOVELLA
2023
$ \text{<0.09 - 0.305} $ ${}^{130}\mathrm {Te}$ CUORE 4
ADAMS
2022A
$ \text{<0.8 - 2.5} $ ${}^{136}\mathrm {Xe}$ XENON1T 5
APRILE
2022A
$ \text{<0.28 - 0.49} $ ${}^{100}\mathrm {Mo}$ CUPID-Mo 6
AUGIER
2022
$ \text{<0.263 - 0.545} $ ${}^{82}\mathrm {Se}$ CUPID-0 7
AZZOLINI
2022
$ \text{<0.31 - 0.54} $ ${}^{100}\mathrm {Mo}$ CUPID-Mo 8
ARMENGAUD
2021
$ \text{<0.075 - 0.35} $ ${}^{130}\mathrm {Te}$ CUORE 9
ADAMS
2020A
$ \text{<0.079 - 0.180} $ ${}^{76}\mathrm {Ge}$ GERDA 10
AGOSTINI
2020B
$ \text{< 1.2 - 2.1} $ ${}^{100}\mathrm {Mo}$ AMoRE 11
ALENKOV
2019
$ \text{<0.093 - 0.286} $ ${}^{136}\mathrm {Xe}$ EXO-200 12
ANTON
2019
$ \text{<1.3 - 3.5} $ ${}^{136}\mathrm {Xe}$ PANDAX-II 13
NI
2019
$ \text{<0.11 - 0.52} $ ${}^{130}\mathrm {Te}$ CUORE 14
ALDUINO
2018
$ \text{< 1.2 - 3.0} $ ${}^{82}\mathrm {Se}$ NEMO-3 15
ARNOLD
2018
$ \text{<1.0 - 1.7} $ ${}^{116}\mathrm {Cd}$ AURORA 16
BARABASH
2018
$ \text{<1.4 - 2.5} $ ${}^{116}\mathrm {Cd}$ NEMO-3 17
ARNOLD
2017
$ \text{<0.27 - 0.76} $ ${}^{130}\mathrm {Te}$ CUORICINO 18
ALDUINO
2016
$ \text{< 1.6 - 5.3} $ ${}^{150}\mathrm {Nd}$ NEMO-3 19
ARNOLD
2016A
$ \text{<0.33 - 0.62} $ ${}^{100}\mathrm {Mo}$ NEMO-3 20
ARNOLD
2015
$ \text{< 7.2 - 19.5} $ ${}^{96}\mathrm {Zr}$ NEMO-3 21
ARGYRIADES
2010
$ \text{<3.5 - 22} $ ${}^{48}\mathrm {Ca}$ CaF$_{2}$ scint. 22
UMEHARA
2008
$ \text{<1.5 - 1.7} $ ${}^{116}\mathrm {Cd}$ ${}^{116}\mathrm {Cd}WO_{4}$ scint. 23
DANEVICH
2003
1  ABE 2023 utilize 745 kg of ${}^{136}\mathrm {Xe}$ isotope exposure from the combined data set of the KamLAND-Zen 400 and 800 to derive a limit on $\langle {\mathit m}_{\mathrm {{{\mathit \beta}} {{\mathit \beta}}}}\rangle $. The range reflects the author's assessment of the variability of the theoretically calculated nuclear matrix elements.
2  ARNQUIST 2023 use the final data set of the MAJORANA DEMONSTRATOR experiment, with 64.5 kg$\cdot{}$yr of isotop exposure, to derive an upper limit for $\langle {\mathit m}_{\mathrm {{{\mathit \beta}} {{\mathit \beta}}}}\rangle $. The range reflects the author's assessment of the variability of the theoretically calculated nuclear matrix elements.
3  NOVELLA 2023 use data collected with the NEXT-White experiment to derive a range of upper limits for $\langle {\mathit m}_{\mathrm {{{\mathit \beta}} {{\mathit \beta}}}}\rangle $. The range reflects the author's assessment of the variability of the theoretically calculated nuclear matrix elements and both half-life limits stated in NOVELLA 2023.
4  ADAMS 2022A use 1038.4 kg$\cdot{}$yr of TeO$_{2}$ exposure collected by the CUORE experiment to determine this range of limits. The range reflects the uncertainty of nuclear matrix element calculations needed for the conversion of half-life to neutrino mass.
5  APRILE 2022A use data taken with the XENON1T detector to limit the Majorana neutrino mass. 36.16 kg$\cdot{}$yr of ${}^{136}\mathrm {Xe}$ exposure were utilized. The reported range of limits is due to uncertainties in the nuclear matrix elements.
6  AUGIER 2022 use the final data set of the CUPID-Mo cryogenic calorimeter with an isotop exposure of 1.47 kg$\cdot{}$y to derive a range of neutrino mass limits. The range reflects the authors' estimate of the spread of nuclear matrix element calculations.
7  AZZOLINI 2022 use 8.82 kg$\cdot{}$yr of isotopic exposure of the CPID-0 scintillating cryogenic bolometer to set this range of neutrino mass limits. The range reflects the authors' estimate of the spread of nuclear matrix element calculations.
8  ARMENGAUD 2021 use the CUPID-Mo demonstrator, with 1.17 kg$\cdot{}$yr exposure of ${}^{100}\mathrm {Mo}$, to set this limit. The range reflects the estimated uncertainty of the calculated nuclear matrix elements.
9  ADAMS 2020A use the data of CUORE (372.5 kg$\cdot{}$yr exposure of TeO$_{2}$) to obtain this limit.
10  AGOSTINI 2020B use the final data set of the GERDA experiment, representing an exposure of 127.2 kg$\cdot{}$yr to derive an upper limit for $\langle {\mathit m}_{\mathrm {{{\mathit \beta}} {{\mathit \beta}}}}\rangle $. Isotopically enriched ${}^{}\mathrm {Ge}$ detectors were used. The range reflects the variability of the theoretically calculated nuclear matrix elements. Supersedes AGOSTINI 2019.
11  ALENKOV 2019 report the range of the effective masses $\langle {\mathit m}_{\mathrm {{{\mathit \beta}} {{\mathit \beta}}}}\rangle $ corresponding to the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay half-life limit. It is based on the 52.1 kg$\cdot{}$d exposure of ${}^{100}\mathrm {Mo}$, in the Yangyang underground laboratory. The median sensitivity is $1.1 \times 10^{23}$ years. The range of $\langle {\mathit m}_{\mathrm {{{\mathit \beta}} {{\mathit \beta}}}}\rangle $ reflects the uncertainty of nuclear matrix elements.
12  ANTON 2019 uses the complete dataset of the EXO-200 experiment to obtain these limits. The spread reflect the uncertainty in the nuclear matrix elements. Supersedes ALBERT 2018 and ALBERT 2014B.
13  NI 2019 use the PandaX-II dual phase TPC at CJPL to search for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{136}\mathrm {Xe}$ with 22.2 kg yr exposure. The range in the ${{\mathit m}}_{{{\mathit \beta}} {{\mathit \beta}}}$ limit of $1.3 - 3.5$ eV reflects the range of the calculated nuclear matrix elements. The sensitivity is $1.9 \times 10^{23}$ yr.
14  ALDUINO 2018 use the combined data of CUORE, CUORE0, and Cuoricino to obtain this limit.
15  ARNOLD 2018 use the NEMO-3 tracking detector to constrain the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of $^{82}$Se. The limit on $\langle {\mathit m}_{\mathrm {{{\mathit \beta}} {{\mathit \beta}}}}\rangle $ is obtained assuming light neutrino exchange; the range reflects different calculations of the nuclear matrix elements. This is a somewhat weaker limit than in BARABASH 2011A using the same detector.
16  BARABASH 2018 use 1.162 kg of ${}^{116}\mathrm {Cd}WO_{4}$ scintillating crystals to obtain these limits. The spread reflects the estimated uncertainty in the nuclear matrix element. Supersedes DANEVICH 2003.
17  ARNOLD 2017 utilize NEMO-3 data, taken with enriched ${}^{116}\mathrm {Cd}$ to limit the effective Majorana neutrino mass. The reported range results from the use of different nuclear matrix elements. Supersedes BARABASH 2011A.
18  ALDUINO 2016 place a limit on the effective Majorana neutrino mass using the combined data of the CUORE-0 and CUORICINO experiments. The range reflects the authors' evaluation of the variability of the nuclear matrix elements. Supersededs ALFONSO 2015.
19  ARNOLD 2016A limit is derived from data taken with the NEMO-3 detector and ${}^{150}\mathrm {Nd}$. A range of nuclear matrix elements that include the effect of nuclear deformation have been used. Supersedes ARGYRIADES 2009.
20  ARNOLD 2015 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the neutrino mass limit based on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$. The spread range reflects different nuclear matrix elements. Supersedes ARNOLD 2014 and BARABASH 2011A.
21  ARGYRIADES 2010 use ${}^{96}\mathrm {Zr}$ and the NEMO-3 tracking detector to obtain the reported mass limit. The range reflects the fluctuation of the nuclear matrix elements considered.
22  Limit was obtained using CaF$_{2}$ scintillation calorimeter to search for double beta decay of ${}^{48}\mathrm {Ca}$. Reported range of limits reflects spread of QRPA and SM matrix element calculations used. Supersedes OGAWA 2004.
23  Limit for $\langle {\mathit m}_{{{\mathit \nu}}}\rangle $ is based on the nuclear matrix elements of STAUDT 1990 and ARNOLD 1996. Supersedes DANEVICH 2000.
References