• • • We do not use the following data for averages, fits, limits, etc. • • • |
$
\text{< 0.07 - 0.16}
$
|
${}^{76}\mathrm {Ge}$
|
GERDA
|
1 |
|
$
\text{< 1.2 - 2.1}
$
|
${}^{100}\mathrm {Mo}$
|
AMoRE
|
2 |
|
$
\text{<0.200 - 0.433}
$
|
${}^{76}\mathrm {Ge}$
|
MAJORANA
|
3 |
|
$
\text{<0.093 - 0.286}
$
|
${}^{136}\mathrm {Xe}$
|
EXO-200
|
4 |
|
$
\text{<0.311 - 0.638}
$
|
${}^{82}\mathrm {Se}$
|
CUPID-0
|
5 |
|
$
\text{<1.3 - 3.5}
$
|
${}^{136}\mathrm {Xe}$
|
PANDAX-II
|
6 |
|
$
\text{<0.24 - 0.52}
$
|
${}^{76}\mathrm {Ge}$
|
MAJORANA Dem
|
7 |
|
$
\text{<0.12 - 0.26}
$
|
${}^{76}\mathrm {Ge}$
|
GERDA
|
8 |
|
$
\text{<0.15 - 0.40}
$
|
${}^{136}\mathrm {Xe}$
|
EXO-200
|
9 |
|
$
\text{<0.11 - 0.52}
$
|
${}^{130}\mathrm {Te}$
|
CUORE
|
10 |
|
$
\text{< 1.2 - 3.0}
$
|
${}^{82}\mathrm {Se}$
|
NEMO-3
|
11 |
|
$
\text{<0.376 - 0.770}
$
|
${}^{82}\mathrm {Se}$
|
CUPID-0
|
12 |
|
$
\text{<1.0 - 1.7}
$
|
${}^{116}\mathrm {Cd}$
|
AURORA
|
13 |
|
$
\text{<0.15 - 0.33}
$
|
${}^{76}\mathrm {Ge}$
|
GERDA
|
14 |
|
$
\text{<1.4 - 2.5}
$
|
${}^{116}\mathrm {Cd}$
|
NEMO-3
|
15 |
|
$
\text{<0.27 - 0.76}
$
|
${}^{130}\mathrm {Te}$
|
CUORE(CINO)
|
16 |
|
$
\text{< 1.6 - 5.3}
$
|
${}^{150}\mathrm {Nd}$
|
NEMO-3
|
17 |
|
$
\text{<0.061 - 0.165}
$
|
${}^{136}\mathrm {Xe}$
|
KamLAND-Zen
|
18 |
|
$
\text{<0.33 - 0.62}
$
|
${}^{100}\mathrm {Mo}$
|
NEMO-3
|
19 |
|
$
\text{<0.19 - 0.45}
$
|
${}^{136}\mathrm {Xe}$
|
EXO-200
|
20 |
|
$
\text{<0.89 - 2.43}
$
|
${}^{82}\mathrm {Se}$
|
NEMO-3
|
21 |
|
$
\text{< 7.2 - 19.5}
$
|
${}^{96}\mathrm {Zr}$
|
NEMO-3
|
22 |
|
$
\text{<3.5 - 22}
$
|
${}^{48}\mathrm {Ca}$
|
CaF$_{2}$ scint.
|
23 |
|
$
\text{<0.2 - 1.1}
$
|
${}^{130}\mathrm {Te}$
|
Cryog. det.
|
24 |
|
$
\text{<0.37 - 1.9}
$
|
${}^{130}\mathrm {Te}$
|
Cryog. det.
|
25 |
|
$
\text{<1.5 - 1.7}
$
|
${}^{116}\mathrm {Cd}$
|
${}^{116}\mathrm {Cd}WO_{4}$ scint.
|
26 |
|
$
\text{<0.350}
$
|
${}^{76}\mathrm {Ge}$
|
Enriched HPGe
|
27 |
|
$
<8.3
$
|
${}^{48}\mathrm {Ca}$
|
CaF$_{2}$ scint.
|
|
|
1
AGOSTINI 2019 use 82.4 kg$\cdot{}$yr of data collected by the isotopically enriched ${}^{76}\mathrm {Ge}$ detectors of the GERDA experiment to derive an upper limit for $\langle {\mathit m}_{\mathrm { {{\mathit \beta}} {{\mathit \beta}} }}\rangle $. The range reflects the variability of the theoretically calculated nuclear matrix elements. Supersedes AGOSTINI 2018 .
|
2
ALENKOV 2019 report the range of the effective masses $\langle {\mathit m}_{\mathrm { {{\mathit \beta}} {{\mathit \beta}} }}\rangle $ corresponding to the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay half-life limit. It is based on the 52.1 kg$\cdot{}$d exposure of ${}^{100}\mathrm {Mo}$, in the Yangyang underground laboratory. The median sensitivity is $1.1 \times 10^{23}$ years. The range of $\langle {\mathit m}_{\mathrm { {{\mathit \beta}} {{\mathit \beta}} }}\rangle $ reflects the uncertainty of nuclear matrix elements.
|
3
ALVIS 2019 use the MAJORANA Demonstrator with enriched in ${}^{76}\mathrm {Ge}$ detectors to set this limit. The exposure is 26.0 kg yr. The sensitivity is $4.8 \times 10^{25}$ yr.
|
4
ANTON 2019 uses the complete dataset of the EXO-200 experiment to obtain these limits. The spread reflect the uncertainty in the nuclear matrix elements. Supersedes ALBERT 2018 and ALBERT 2014B.
|
5
AZZOLINI 2019 use the CPID-0 scintillating cryogenic bolometer to set this limit. The exposure is 5.29 kg yr. The sensitivity is $5 \times 10^{24}$ yr.
|
6
NI 2019 use the PandaX-II dual phase TPC at CJPL to search for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{136}\mathrm {Xe}$ with 22.2 kg yr exposure. The range in the ${{\mathit m}}_{ {{\mathit \beta}} {{\mathit \beta}} }$ limit of $1.3 - 3.5$ eV reflects the range of the calculated nuclear matrix elements. The sensitivity is $1.9 \times 10^{23}$ yr.
|
7
AALSETH 2018 uses the MAJORANA Demonstrator detector to establish this limit.
|
8
AGOSTINI 2018 uses the GERDA detector to establish this limit.
|
9
ALBERT 2018 uses the EXO-200 experiment to obtain this limit.
|
10
ALDUINO 2018 use the combined data of CUORE, CUORE0, and Cuoricino to obtain this limit.
|
11
ARNOLD 2018 use the NEMO-3 tracking detector to constrain the 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of $^{82}$Se. The limit on $\langle {\mathit m}_{\mathrm { {{\mathit \beta}} {{\mathit \beta}} }}\rangle $ is obtained assuming light neutrino exchange; the range reflects different calculations of the nuclear matrix elements. This is a somewhat weaker limit than in BARABASH 2011A using the same detector.
|
12
AZZOLINI 2018 uses data collected by the CUPID-0 scintillating cryogenic calorimeter, operated in the LNGS, to derive a range of limits on $\langle {\mathit m}_{{{\mathit \nu}}}\rangle $. The reported range reflects the spread of the nuclear matrix element calculations considered in this work. Use ${{\mathit g}_{{A}}}$= 1.269.
|
13
BARABASH 2018 use 1.162 kg of ${}^{116}\mathrm {Cd}WO_{4}$ scintillating crystals to obtain these limits. The spread reflects the estimated uncertainty in the nuclear matrix element. Supersedes DANEVICH 2003 .
|
14
AGOSTINI 2017 is based on 343 mol yr of data from GERDA phase 1 and phase 2 first part and the corresponding limit on T$_{1/2}$ using the different nuclear matrix elements mentioned by the authors. Supersedes AGOSTINI 2013A.
|
15
ARNOLD 2017 utilize NEMO-3 data, taken with enriched ${}^{116}\mathrm {Cd}$ to limit the effective Majorana neutrino mass. The reported range results from the use of different nuclear matrix elements. Supersedes BARABASH 2011A.
|
16
ALDUINO 2016 place a limit on the effective Majorana neutrino mass using the combined data of the CUORE-0 and CUORICINO experiments. The range reflects the authors' evaluation of the variability of the nuclear matrix elements. Supersededs ALFONSO 2015 .
|
17
ARNOLD 2016A limit is derived from data taken with the NEMO-3 detector and ${}^{150}\mathrm {Nd}$. A range of nuclear matrix elements that include the effect of nuclear deformation have been used. Supersedes ARGYRIADES 2009 .
|
18
GANDO 2016 result is based on the 2016 KamLAND-Zen half-life limit. The stated range reflects different nuclear matrix elements, an unquenched ${{\mathit g}_{{A}}}$ = 1.27 is used. Supersedes GANDO 2013A.
|
19
ARNOLD 2015 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the neutrino mass limit based on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$. The spread range reflects different nuclear matrix elements. Supersedes ARNOLD 2014 and BARABASH 2011A.
|
20
ALBERT 2014B is based on 100 kg yr of exposure of the EXO-200 tracking calorimeter. The mass range reflects the nuclear matrix element calculations. Supersedes AUGER 2012 .
|
21
BARABASH 2011A limit is based on NEMO-3 data for ${}^{82}\mathrm {Se}$. The reported range reflects different nuclear matrix elements. Supersedes ARNOLD 2005A and ARNOLD 2004 .
|
22
ARGYRIADES 2010 use ${}^{96}\mathrm {Zr}$ and the NEMO-3 tracking detector to obtain the reported mass limit. The range reflects the fluctuation of the nuclear matrix elements considered.
|
23
Limit was obtained using CaF$_{2}$ scintillation calorimeter to search for double beta decay of ${}^{48}\mathrm {Ca}$. Reported range of limits reflects spread of QRPA and SM matrix element calculations used. Supersedes OGAWA 2004 .
|
24
Supersedes ARNABOLDI 2004 . Reported range of limits due to use of different nuclear matrix element calculations.
|
25
Supersedes ARNABOLDI 2003 . Reported range of limits due to use of different nuclear matrix element calculations.
|
26
Limit for $\langle {\mathit m}_{{{\mathit \nu}}}\rangle $ is based on the nuclear matrix elements of STAUDT 1990 and ARNOLD 1996 . Supersedes DANEVICH 2000 .
|
27
KLAPDOR-KLEINGROTHAUS 2001 uses the calculation by STAUDT 1990 . Using several other models in the literature could worsen the limit up to $1.2~$eV. This is the most stringent experimental bound on ${\mathit m}_{{{\mathit \nu}}}$. It supersedes BAUDIS 1999B.
|