POLARIZATION IN ${{\mathit B}_{{{s}}}^{0}}$ DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal ($\mathit L$), or both are transverse and parallel ($\parallel$), or perpendicular ($\perp$) to each other with the parameters $\Gamma _{L}/\Gamma $, $\Gamma _{\perp}/\Gamma $, and the relative phases $\phi _{\parallel}$ and $\phi _{\perp}$. In decays involving two tensor mesons, the transverse polarization states are described by parameters $\Gamma _{\parallel1}$, $\Gamma _{\parallel2}$, $\Gamma _{\perp1}$, $\Gamma _{\perp2}$ and their relative phases $\phi _{\parallel1}$, $\phi _{\parallel2}$, $\phi _{\perp1}$, $\phi _{\perp2}$. See also the review on “Polarization in ${{\mathit B}}$ Decays.''

$\phi _{\parallel}$ in ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$

INSPIRE   JSON  (beta) PDGID:
S086P07
VALUE (rad) DOCUMENT ID TECN  COMMENT
$\bf{ 2.469 \pm0.029}$ OUR AVERAGE
$2.463$ $\pm0.029$ $\pm0.009$
AAIJ
2023AT
LHCB ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$2.54$ $\pm0.07$ $\pm0.09$ 1
AAIJ
2014AE
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8 TeV
$2.71$ ${}^{+0.31}_{-0.36}$ $\pm0.22$ 2
AALTONEN
2011AN
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
• • We do not use the following data for averages, fits, limits, etc. • •
$2.559$ $\pm0.045$ $\pm0.033$
AAIJ
2019AP
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8, partial 13 TeV
$2.57$ $\pm0.15$ $\pm0.06$ 3
AAIJ
2012P
LHCB Repl. by AAIJ 2014AE
1  AAIJ 2014AE reports measurement of ${{\mathit \phi}}_{\perp}$ and ${{\mathit \phi}}_{\perp}−{{\mathit \phi}}_{\parallel}$, which we convert into ${{\mathit \phi}}_{\parallel}$. Statistical uncertainty includes correlation between measured parameters, while systematic uncertainties are assumed uncorrelated.
2  AALTONEN 2011AN quotes cos ${{\mathit \phi}}_{\parallel}$ = $-0.91$ ${}^{+0.15}_{-0.13}$ $\pm0.09$ which we convert to ${{\mathit \phi}}_{\parallel}$ taking the smaller solution.
3  AAIJ 2012P quotes cos ${{\mathit \phi}}_{\parallel}$ = $-0.844$ $\pm0.068$ $\pm0.029$ which we convert to ${{\mathit \phi}}_{\parallel}$, taking the smaller solution.
References