POLARIZATION IN ${{\mathit B}_{{{s}}}^{0}}$ DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal ($\mathit L$), or both are transverse and parallel ($\parallel$), or perpendicular ($\perp$) to each other with the parameters $\Gamma _{L}/\Gamma $, $\Gamma _{\perp}/\Gamma $, and the relative phases $\phi _{\parallel}$ and $\phi _{\perp}$. In decays involving two tensor mesons, the transverse polarization states are described by parameters $\Gamma _{\parallel1}$, $\Gamma _{\parallel2}$, $\Gamma _{\perp1}$, $\Gamma _{\perp2}$ and their relative phases $\phi _{\parallel1}$, $\phi _{\parallel2}$, $\phi _{\perp1}$, $\phi _{\perp2}$. See also the review on “Polarization in ${{\mathit B}}$ Decays.''

$\Gamma _{\mathit L}/\Gamma $ in ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}$

INSPIRE   JSON  (beta) PDGID:
S086P1
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ 0.5194 \pm0.0034}$ OUR AVERAGE  Error includes scale factor of 1.5.  See the ideogram below.
$0.5179$ $\pm0.0017$ $\pm0.0032$ 1
AAIJ
2024A
LHCB ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$0.5152$ $\pm0.0012$ $\pm0.0034$ 2
AAD
2021AE
ATLS ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
$0.5289$ $\pm0.0038$ $\pm0.0041$ 3
SIRUNYAN
2021E
CMS ${{\mathit p}}{{\mathit p}}$ at 8, 13 TeV
$0.524$ $\pm0.013$ $\pm0.015$ 3
AALTONEN
2012D
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
$0.558$ ${}^{+0.017}_{-0.019}$ 3, 4
ABAZOV
2012D
D0 ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
$0.61$ $\pm0.14$ $\pm0.02$ 5
AFFOLDER
2000N
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.8 TeV
$0.56$ $\pm0.21$ ${}^{+0.02}_{-0.04}$
ABE
1995Z
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.8 TeV
• • We do not use the following data for averages, fits, limits, etc. • •
$0.5350$ $\pm0.0047$ $\pm0.0049$ 3
SIRUNYAN
2021E
CMS ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$0.5186$ $\pm0.0029$ $\pm0.0023$
AAIJ
2019Q
LHCB Repl. by AAIJ 2024A
$0.522$ $\pm0.003$ $\pm0.007$ 2
AAD
2016AP
ATLS Repl. by AAD 2021AE
$0.510$ $\pm0.005$ $\pm0.011$ 3
KHACHATRYAN
2016S
CMS ${{\mathit p}}{{\mathit p}}$ at 8 TeV
$0.5241$ $\pm0.0034$ $\pm0.0067$
AAIJ
2015I
LHCB Repl. by AAIJ 2019Q
$0.529$ $\pm0.006$ $\pm0.012$ 2
AAD
2014U
ATLS Repl. by AAD 2016AP
$0.539$ $\pm0.014$ $\pm0.016$ 3
AAD
2012CV
ATLS Repl. by AAD 2014U
$0.555$ $\pm0.027$ $\pm0.006$ 6
ABAZOV
2009E
D0 Repl. by ABAZOV 2012D
$0.531$ $\pm0.020$ $\pm0.007$ 3
AALTONEN
2008J
CDF Repl. by AALTONEN 2012D
$0.62$ $\pm0.06$ $\pm0.01$
ACOSTA
2005
CDF Repl. by AALTONEN 2008J
1  Measured using a time-dependent angular analysis of ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ decays.
2  Measured using the flavor tagged, time-dependent angular analysis of ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \phi}}$ decays.
3  Measured using the time-dependent angular analysis of ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \phi}}$ decays.
4  The error includes both statistical and systematic uncertainties.
5  AFFOLDER 2000N measurements are based on 40 ${{\mathit B}_{{{s}}}^{0}}$ candidates obtained from a data sample of 89$~$pb${}^{-1}$. The $\mathit P$-wave fraction is found to be $0.23$ $\pm0.19$ $\pm0.04$.
6  Measured the angular and lifetime parameters for the time-dependent angular untagged decays ${{\mathit B}_{{{d}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit K}^{*0}}$ and ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \phi}}$.

           $\Gamma _{\mathit L}/\Gamma $ in ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}$
References