OTHER ${{\mathit H}}$ PRODUCTION PROPERTIES

Higgs-gauge boson quartic coupling modifier ${{\mathit \kappa}_{{{2V}}}}$

INSPIRE   JSON  (beta) PDGID:
S126K2V
Signal strength relative to the SM prediction, ${{\mathit \kappa}_{{{2V}}}}$ = $\lambda _{{{\mathit V}} {{\mathit V}} {{\mathit H}} {{\mathit H}}}$ $/$ $\lambda {}^{SM}_{{{\mathit V}} {{\mathit V}} {{\mathit H}} {{\mathit H}}}$, ${{\mathit V}}$ = ${{\mathit W}}$, ${{\mathit Z}}$.
VALUE CL% DOCUMENT ID TECN  COMMENT
$1.02$ ${}^{+0.22}_{-0.23}$ 1
AAD
2024BL
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, multilepton , ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \ell}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$-0.5\text{ to }2.7 $ 95 2
AAD
2024AZ
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$
$-2.5\text{ to }4.6 $ 95 3
AAD
2024BG
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit V}}{{\mathit V}}{{\mathit V}}{{\mathit V}}$, ${{\mathit V}}{{\mathit V}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit V}}{{\mathit V}}$, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \tau}}{{\mathit \tau}}$
$0.6\text{ to }1.5 $ 95 1
AAD
2024BL
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, multilepton , ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \ell}}$
$0.55\text{ to }1.49 $ 95 4
AAD
2024BV
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$0.52\text{ to }1.52 $ 95 5
AAD
2024BV
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-0.5\text{ to }2.7 $ 95 6
AAD
2024X
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$
$-0.17\text{ to }2.4 $ 95 7
AAD
2024Y
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, multilepton
$-1.1\text{ to }3.2 $ 95 8
HAYRAPETYAN
2024AE
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$
$-12.2\text{ to }13.5 $ 95 9
HAYRAPETYAN
2024AW
CMS 13 TeV, ${{\mathit V}}{{\mathit H}}{{\mathit H}}$, ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-8.6\text{ to }10.0 $ 95 10
AAD
2023AD
ATLS 13 TeV, ${{\mathit V}}{{\mathit H}}{{\mathit H}}$, ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$0.1\text{ to }2.0 $ 95 11
AAD
2023AT
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$
$0.0\text{ to }2.1 $ 95 12
AAD
2023BK
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$0.62\text{ to }1.41 $ 95 13
TUMASYAN
2023AE
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-0.4\text{ to }2.6 $ 95 14
TUMASYAN
2023D
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$
$0.67\text{ to }1.38 $ 95 15
CMS
2022
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, multilepton
$\text{-0.1 to 2.2}$ 95 16
TUMASYAN
2022AN
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$\text{-1.3 to 3.5}$ 95 17
SIRUNYAN
2021K
CMS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
$\text{-0.43 to 2.56}$ 95 18
AAD
2020X
ATLS 13 TeV, VBF, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
1  AAD 2024BL combine results from $126 - 140$ fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ (AAD 2023BK, AAD 2024BV), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ (AAD 2024AZ), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ (AAD 2024X), multilepton (AAD 2024BG), and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \ell}}$ (AAD 2024Y). See their Fig. 3. All other Higgs couplings are fixed to the SM values.
2  AAD 2024AZ search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Two-dimensional exclusion regions as a function of the ${{\mathit \kappa}_{{{\lambda}}}}$ and ${{\mathit \kappa}_{{{2V}}}}$ couplings are shown in their Fig. 9. All other Higgs couplings are fixed to the SM values.
3  AAD 2024BG search for non-resonant ${{\mathit H}}{{\mathit H}}$ production targeting the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit V}}{{\mathit V}}{{\mathit V}}{{\mathit V}}$, ${{\mathit V}}{{\mathit V}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit V}}{{\mathit V}}$, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \tau}}{{\mathit \tau}}$ decay channels with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The limits are obtained with the values of all other couplings fixed to their SM value.
4  AAD 2024BV search for non-resonant ${{\mathit H}}{{\mathit H}}$ production via vector boson fusion in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state using two boosted Higgs ($p_T$ $>$ 250 GeV) with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The result is obtained by combining with the resolved result (AAD 2023BK). The value $\kappa _{2V}$ = 0 is excluded with a significance of 3.8 $\sigma $ with other Higgs couplings fixed to their SM values. Two-dimensional exclusion regions as a function of the $\kappa _{\lambda }$ and $\kappa _{2V}$ parameters are shown in their Fig. 6. All other Higgs couplings are fixed to the SM values.
5  AAD 2024BV search for non-resonant ${{\mathit H}}{{\mathit H}}$ production via vector boson fusion in the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ final state using two boosted Higgs ($p_T$ $>$ 250 GeV) with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The value $\kappa _{2V}$ = 0 is excluded with a significance of 3.4 $\sigma $ with other Higgs couplings fixed to their SM values.
6  AAD 2024X search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Two-dimensional exclusion regions as a function of the $\kappa _{\lambda }$ and $\kappa _{2V}$ couplings are shown in their Fig. 6. All other Higgs couplings are fixed to the SM values.
7  AAD 2024Y search for non-resonant ${{\mathit H}}{{\mathit H}}$ production in 2 ${{\mathit b}}{+}$ 2 ${{\mathit \ell}}{+}$ ${{\mathit \nu}}$s final state (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$) targeting ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ decay channels with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. All other coupling modifiers are set to their SM values.
8  HAYRAPETYAN 2024AE search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Two-dimensional exclusion regions as a function of the ($\kappa _{\lambda }$, $\kappa _{2V}$) and ($\kappa _{V}$, $\kappa _{2V}$) are shown in their Figs. 13 and 14. All other Higgs couplings are fixed to the SM values.
9  HAYRAPETYAN 2024AW search for non-resonant ${{\mathit H}}{{\mathit H}}$ production in association with a vector boson using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The vector boson decays both leptonically (${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$, ${{\mathit \nu}}{{\mathit \nu}}$, ${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$) and hadronically. All other Higgs couplings are fixed to the SM values. Two-dimensional exclusion regions as a function of the $\kappa _{2V}$ and $\kappa _{\lambda }$ parameters are shown in their Fig. 14, with other couplings fixed to the SM values. The best fit value is ($\kappa _{\lambda }$, $\kappa _{2V}$) = (-2.6, 10.1). The constraints on $\kappa _{2W}$ and $\kappa _{2Z}$ are separately measured to be -14.0 $<$ $\kappa _{2W}$ $<$ 15.4 and -17.4 $<$ $\kappa _{2Z}$ $<$ 18.5 (95$\%$ CL). The quoted $\kappa _{2V}$ (${{\mathit V}}$ = ${{\mathit W}}$ , ${{\mathit Z}}$) is measured assuming all other Higgs boson couplings are at their SM value. See their Table 7.
10  AAD 2023AD search for non-resonant ${{\mathit H}}{{\mathit H}}$ production in association with a vector boson using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 139 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The vector boson decays leptonically (${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$, ${{\mathit \nu}}{{\mathit \nu}}$, ${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$). The constraints on $\kappa _{2W}$ and $\kappa _{2Z}$ are separately measured to be -12.3 $<$ $\kappa _{2W}$ $<$ 13.5 and -9.9 $<$ $\kappa _{2Z}$ $<$ 11.3 (95$\%$ CL). The quoted $\kappa _{2V}$ (${{\mathit V}}$ = ${{\mathit W}}$ , ${{\mathit Z}}$) is measured assuming all other Higgs boson couplings are at their SM value.
11  AAD 2023AT combine results from $126 - 139$ fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ (AAD 2023BK), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ (AAD 2023Z), and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ (AAD 2022Y). The quoted values are obtained from the 95$\%$ CL VBF ${{\mathit H}}{{\mathit H}}$ cross-section upper limit as a function of $\kappa _{2V}$ as shown in their Fig. 4(b). All other coupling modifiers are assumed to have their SM values.
12  AAD 2023BK search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 126 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted values are obtained from the one-dimensional profile likelihood scan as a function of $\kappa _{2V}$. See their Fig. 12 (b). The $\mu _{VBF}$ measurement for different values of $\kappa _{2V}$ constrains -0.03 $<$ $\kappa _{2V}$ $<$ 2.11 at 95$\%$ CL as shown in their Fig. 10 (b). $\kappa _{\lambda }$= $\kappa _{V}$ = 1 is assumed in both cases.
13  TUMASYAN 2023AE search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, where both ${{\mathit b}}{{\overline{\mathit b}}}$ pairs are highly boosted, with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The $\kappa _{2V}$ = 0 is excluded at 6.3 $\sigma $ assuming all other Higgs boson couplings are at their SM values.
14  TUMASYAN 2023D search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted values are obtained from the upper limits on the ${{\mathit H}}{{\mathit H}}$ production cross section times the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ branching fraction for different values of $\kappa _{2V}$. See their Fig. 8 (right). All other coupling modifiers are assumed to be 1. In addition, two-dimensional exclusion regions as a function of the $\kappa _{2V}$ and $\kappa _{V}$ couplings, with $\kappa _{\lambda }$ = $\kappa _{t}$ = 1, are shown in their Fig. 9 (right). The one-dimensional likelihood scan as a function of $\kappa _{2V}$ is given in their Fig. 10 (right), from which a 95$\%$ confidence interval of -0.34 $<$ $\kappa _{2V}$ $<$ 2.49 is extracted.
15  CMS 2022 report combined results (see their Extended Data Table 2) using 138 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 (right).
16  TUMASYAN 2022AN search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The upper limit on the ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ production cross section at 95$\%$ CL is shown as a function of $\kappa _{2V}$ in their Fig. 2 (bottom).
17  SIRUNYAN 2021K search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 137 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
18  AAD 2020X search for ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ process via VBF with data of 126 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
References