Higgs couplings

bottom Yukawa coupling (${{\mathit \kappa}_{{{b}}}}$)

INSPIRE   PDGID:
S126KBC
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$\text{-1.09 to -0.86 OR 0.81 to 1.09}$ 95 1
AAD
2023C
ATLS ${{\mathit p}}{{\mathit p}}$, 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ cross sections
2
AAD
2023CD
ATLS ${{\mathit p}}{{\mathit p}}$, 13 TeV, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \Upsilon}{(nS)}}{{\mathit \gamma}}$
$-1.1\text{ to }1.1 $ 95 3
HAYRAPETYAN
2023
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV, ${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ cross sections
$0.90$ $\pm0.11$ 4, 5
ATLAS
2022
ATLS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$0.89$ $\pm0.11$ 4, 6
ATLAS
2022
ATLS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$0.82$ ${}^{+0.09}_{-0.08}$ 4, 7
ATLAS
2022
ATLS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$1.02$ ${}^{+0.15}_{-0.17}$ 8, 9
CMS
2022
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$0.99$ ${}^{+0.17}_{-0.16}$ 8, 10
CMS
2022
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
1  AAD 2023C combine results of ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ and ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$) using 139 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The Higgs boson transverse momentum (${{\mathit p}}{}^{H}_{T}$) distribution constrains $\kappa _{b}$ and $\kappa _{c}$, assuming other couplings fixed to the SM values. The $\kappa _{b}$ is obtained using the ${{\mathit p}}{}^{H}_{T}$ shape and normalisation. Other cases are given in their Tables 6 and 7.
2  AAD 2023CD search for ${{\mathit H}}$ $\rightarrow$ ${{\mathit \Upsilon}{(nS)}}{{\mathit \gamma}}$, ${{\mathit \Upsilon}{(nS)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ (n=1,2,3) with 138 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. They interpret the ${{\mathit H}}$ $\rightarrow$ ${{\mathit \Upsilon}{(nS)}}{{\mathit \gamma}}$ search to constraint the bottom Yukawa coupling by comparing to ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$. An observed 95$\%$ CL interval of (-37, 40) is obtained for ${{\mathit \kappa}_{{{b}}}}/{{\mathit \kappa}_{{{\gamma}}}}$.
3  HAYRAPETYAN 2023 measure the cross sections for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$) using 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The $\kappa _{b}$ is obtained from the $p_T$ differential cross section of the ggF production employing the dependence of the branching fraction on $\kappa _{b}$ and $\kappa _{c}$.
4  ATLAS 2022 report combined results (see their Extended Data Table 1) using up to 139fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, assuming ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV.
5  All modifiers ($\kappa $) $>$ 0, and $\kappa _{c}$ = $\kappa _{t}$ (${{\mathit B}}_{inv}$ = ${{\mathit B}}_{undetected}$ = 0) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both $\kappa _{c}$ = $\kappa _{t}$ and $\kappa _{c}$ floating.
6  ${{\mathit B}}_{inv}$ = ${{\mathit B}}_{undetected}$ = 0 is assumed. Coupling strength modifiers including effective photon, ${{\mathit Z}}{{\mathit \gamma}}$ and gluon are measured. See their Fig. 6.
7  ${{\mathit B}}_{inv}$ floating, ${{\mathit B}}_{undetected}{}\geq{}$ 0, and $\kappa _{V}{}\leq{}$ 1 are assumed. Coupling strength modifiers including effective photon, ${{\mathit Z}}{{\mathit \gamma}}$ and gluon are measured. See their Fig. 6.
8  CMS 2022 report combined results (see their Extended Data Table 2) using up to 138 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, assuming ${\mathit m}_{{{\mathit H}}}$ = 125.38 GeV.
9  Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.
10  Coupling strength modifiers including effective photon, ${{\mathit Z}}{{\mathit \gamma}}$ and gluon are measured. See their Fig. 4 left.
References