OTHER ${{\mathit H}}$ PRODUCTION PROPERTIES

Higgs trilinear self coupling modifier ${{\mathit \kappa}_{{{\lambda}}}}$

INSPIRE   JSON  (beta) PDGID:
S126KLA
Signal strength relative to the SM prediction, $\kappa _{\lambda }$ = $\lambda _{{{\mathit H}} {{\mathit H}} {{\mathit H}}}$ $/$ $\lambda {}^{SM}_{{{\mathit H}} {{\mathit H}} {{\mathit H}}}$.
VALUE CL% DOCUMENT ID TECN  COMMENT
$3.8$ ${}^{+2.1}_{-3.6}$ 1
AAD
2024BL
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, multilepton , ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \ell}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$-3.1\text{ to }9.0 $ 95 2
AAD
2024AZ
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$
$-6.2\text{ to }11.6 $ 95 3
AAD
2024BG
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit V}}{{\mathit V}}{{\mathit V}}{{\mathit V}}$, ${{\mathit V}}{{\mathit V}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit V}}{{\mathit V}}$, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \tau}}{{\mathit \tau}}$
$-1.2\text{ to }7.2 $ 95 1
AAD
2024BL
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, multilepton , ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \ell}}$
$-1.4\text{ to }6.9 $ 95 4
AAD
2024X
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$
$-6.2\text{ to }13.3 $ 95 5
AAD
2024Y
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, multilepton
$-7.2\text{ to }13.8 $ 95 6
HAYRAPETYAN
2024AE
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$
$-37.7\text{ to }37.2 $ 95 7
HAYRAPETYAN
2024AW
CMS 13 TeV, ${{\mathit V}}{{\mathit H}}{{\mathit H}}$, ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-34.4\text{ to }33.3 $ 95 8
AAD
2023AD
ATLS 13 TeV, ${{\mathit V}}{{\mathit H}}{{\mathit H}}$, ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-0.6\text{ to }6.6 $ 95 9
AAD
2023AT
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$
$-0.4\text{ to }6.3 $ 95 10
AAD
2023AT
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$
$-3.5\text{ to }11.3 $ 95 11
AAD
2023BK
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-5.4\text{ to }14.9 $ 95 12
HAYRAPETYAN
2023
CMS 13 TeV, ${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ cross sections
$-9.9\text{ to }16.9 $ 95 13
TUMASYAN
2023AE
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-1.7\text{ to }8.7 $ 95 14
TUMASYAN
2023D
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$
$-8.8\text{ to }13.4 $ 95 15
TUMASYAN
2023I
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$ (${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$)
$-6.9\text{ to }11.1 $ 95 16
TUMASYAN
2023O
CMS 13 TeV, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}$
$-1.5\text{ to }6.7 $ 95 17
AAD
2022Y
ATLS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
$-1.24\text{ to }6.49 $ 95 18
CMS
2022
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, multilepton
$-2.3\text{ to }9.4 $ 95 19
TUMASYAN
2022AN
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$-3.3\text{ to }8.5 $ 95 20
SIRUNYAN
2021K
CMS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
$-5.0\text{ to }12.0 $ 95 21
AAD
2020C
ATLS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$
$-11\text{ to }17 $ 95 22
SIRUNYAN
2019
CMS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
$-11.8\text{ to }18.8 $ 95 23
SIRUNYAN
2019BE
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$
$-8.2\text{ to }13.2 $ 95 24
AABOUD
2018CW
ATLS 13 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
25
SIRUNYAN
2018A
CMS 13 TeV, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$
$\text{-17 to 22.5}$ 95 26
KHACHATRYAN
2016BQ
CMS 8 TeV, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$
1  AAD 2024BL combine results from $126 - 140$ fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ (AAD 2023BK, AAD 2024BV), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ (AAD 2024AZ), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ (AAD 2024X), multilepton (AAD 2024BG), and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \ell}}{{\mathit \ell}}$ (AAD 2024Y). See their Fig. 3. All other Higgs couplings are fixed to the SM values.
2  AAD 2024AZ search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Two-dimensional exclusion regions as a function of the ${{\mathit \kappa}_{{{\lambda}}}}$ and ${{\mathit \kappa}_{{{2V}}}}$ couplings are shown in their Fig. 9. All other Higgs couplings are fixed to the SM values.
3  AAD 2024BG search for non-resonant ${{\mathit H}}{{\mathit H}}$ production targeting the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit V}}{{\mathit V}}{{\mathit V}}{{\mathit V}}$, ${{\mathit V}}{{\mathit V}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit V}}{{\mathit V}}$, ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \tau}}{{\mathit \tau}}$ decay channels with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The limits are obtained with the values of all other couplings fixed to their SM value.
4  AAD 2024X search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Two-dimensional exclusion regions as a function of the $\kappa _{\lambda }$ and $\kappa _{2V}$ couplings are shown in their Fig. 6. All other Higgs couplings are fixed to the SM values.
5  AAD 2024Y search for non-resonant ${{\mathit H}}{{\mathit H}}$ production in 2 ${{\mathit b}}{+}$ 2 ${{\mathit \ell}}{+}$ ${{\mathit \nu}}$s final state (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$) targeting ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$, and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ decay channels with data of 140 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. All other coupling modifiers are set to their SM values.
6  HAYRAPETYAN 2024AE search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Two-dimensional exclusion regions as a function of the ($\kappa _{\lambda }$, $\kappa _{2V}$) and ($\kappa _{\lambda }$, $\kappa _{t}$) are shown in their Figs. 13 and 15. All other Higgs couplings are fixed to the SM values.
7  HAYRAPETYAN 2024AW search for non-resonant ${{\mathit H}}{{\mathit H}}$ production in association with a vector boson using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The vector boson decays both leptonically (${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$, ${{\mathit \nu}}{{\mathit \nu}}$, ${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$) and hadronically. All other Higgs couplings are fixed to the SM values. Two-dimensional exclusion regions as a function of the $\kappa _{2V}$ and $\kappa _{\lambda }$ parameters are shown in their Fig. 14, with other couplings fixed to the SM values. The best fit value is ($\kappa _{\lambda }$, $\kappa _{2V}$) = (-2.6, 10.1).
8  AAD 2023AD search for non-resonant ${{\mathit H}}{{\mathit H}}$ production in association with a vector boson using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 139 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The vector boson decays leptonically (${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}$, ${{\mathit \nu}}{{\mathit \nu}}$, ${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$). The quoted $\kappa _{\lambda }$ is measured assuming all other Higgs boson couplings are at their SM value.
9  AAD 2023AT combine results from $126 - 139$ fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ (AAD 2023BK), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ (AAD 2023Z), and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ (AAD 2022Y). The quoted values are obtained from the profile likelihood scan as a function of $\kappa _{\lambda }$ as shown in their Fig. 5(a). All other coupling modifiers are assumed to have their SM values.
10  AAD 2023AT combine results from $126 - 139$ fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ (AAD 2023BK), ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ (AAD 2023Z), and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$ (AAD 2022Y) with single-Higgs boson analyses (${{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit Z}}{{\mathit Z}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}$, see their Table 1). The quoted values are obtained from the profile likelihood scan as a function of $\kappa _{\lambda }$ as shown in their Fig. 5(a), assuming that all other Higgs boson couplings are at their SM values. Results with other assumptions are shown in their Table 2.
11  AAD 2023BK search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 126 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted values are obtained from the one-dimensional profile likelihood scan as a function of $\kappa _{\lambda }$. See their Fig. 12 (a). The $\mu _{ggF+VBF}$ measurement for different values of $\kappa _{\lambda }$ constrains -3.9 $<$ $\kappa _{\lambda }$ $<$ 11.1 at 95$\%$ CL as shown in their Fig. 10 (a). $\kappa _{2V}$= $\kappa _{V}$=1 is assumed in both cases.
12  HAYRAPETYAN 2023 measure the cross sections for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$) using 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
13  TUMASYAN 2023AE search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, where both ${{\mathit b}}{{\overline{\mathit b}}}$ pairs are highly boosted, with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted $\kappa _{\lambda }$ is measured assuming all other Higgs boson couplings are at their SM values.
14  TUMASYAN 2023D search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted values are obtained from the upper limit on the ${{\mathit H}}{{\mathit H}}$ production cross section times the ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ branching fraction for different values of $\kappa _{\lambda }$. See their Fig. 8 (left). All other coupling modifiers are assumed to be 1. In addition, two-dimensional exclusion regions as a function of the $\kappa _{\lambda }$ and $\kappa _{t}$ couplings, with $\kappa _{2V}$ = $\kappa _{V}$ = 1, are shown in their Fig. 9 (left). The one-dimensional likelihood scan as a function of $\kappa _{\lambda }$ is given in their Fig 10 (left), from which a 95$\%$ confidence interval of -1.77 $<$ $\kappa _{\lambda }$ $<$ 8.73 is extracted.
15  TUMASYAN 2023AI search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit Z}^{*}}$ (${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$, ${{\mathit \ell}}={{\mathit e}},{{\mathit \mu}}$) with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4.
16  TUMASYAN 2023O search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit \tau}}{{\mathit \tau}}$, and ${{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}{{\mathit \tau}}$ (multilepton) with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10 for different final states and these combination. Limits are set on a variety of new-physics models using an effective field theory approach. See their Figs. 11, 12, and 13.
17  AAD 2022Y search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 139 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted ${{\mathit \kappa}_{{{\lambda}}}}$ is obtained from their Fig. 12 where the theory uncertainties are not included while a negative log-likelihood scan vs. ${{\mathit \kappa}_{{{\lambda}}}}$is shown in their Fig. 13 with the theory uncertainties, which provides ${{\mathit \kappa}_{{{\lambda}}}}$ = $2.8$ ${}^{+2.0}_{-2.2}$ for the 1$\sigma $ confidence interval.
18  CMS 2022 report combined results (see their Extended Data Table 2) using 138 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 (left).
19  TUMASYAN 2022AN search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 138 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The upper limit on the ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ production cross section at 95$\%$ CL is shown as a function of $\kappa _{\lambda }$ in their Fig. 2 (top).
20  SIRUNYAN 2021K search for non-resonant ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 137 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
21  AAD 2020C combine results of up to 36.1 fb${}^{-1}$ data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}{{\mathit W}^{*}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit \gamma}}{{\mathit \gamma}}$, ${{\mathit W}}{{\mathit W}^{*}}{{\mathit W}}{{\mathit W}^{*}}$ (AABOUD 2018CW, AABOUD 2018CQ, AABOUD 2019A, AABOUD 2019O, AABOUD 2018BU, and AABOUD 2019T).
22  SIRUNYAN 2019 search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted $\kappa _{\lambda }$ is measured assuming all other Higgs boson couplings are at their SM value.
23  SIRUNYAN 2019BE combine results of 13 TeV 35.9 fb${}^{-1}$ data: SIRUNYAN 2019, SIRUNYAN 2018A, SIRUNYAN 2019AB, SIRUNYAN 2019H, and SIRUNYAN 2018F.
24  AABOUD 2018CW search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 36.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted $\kappa _{\lambda }$ is measured assuming all other Higgs boson couplings are at their SM value.
25  SIRUNYAN 2018A search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}}{{\mathit \tau}}$ with data of 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The upper limit on production cross section times branching fraction at 95$\%$ CL is shown as a function of $\kappa _{\lambda }/\kappa _{t}$ in their Fig. 6 (top) where $\kappa _{t}$ = ${{\mathit y}_{{{t}}}}$ $/$ ${{\mathit y}_{{{t}}}}{}^{SM}$ (top Yukawa coupling ${{\mathit y}_{{{t}}}}$).
26  KHACHATRYAN 2016BQ search for ${{\mathit H}}{{\mathit H}}$ production using ${{\mathit H}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ with data of 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV.
References