${{\mathit H}}$ SIGNAL STRENGTHS IN DIFFERENT CHANNELS

The ${{\mathit H}}$ signal strength in a particular final state ${{\mathit x}}{{\mathit x}}$ is given by the cross section times branching ratio in this channel normalized to the Standard Model (SM) value, $\sigma $ $\cdot{}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit x}}{{\mathit x}}$) $/$ ($\sigma $ $\cdot{}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit x}}{{\mathit x}}))_{{\mathrm {SM}}}$, for the specified mass value of ${{\mathit H}}$. For the SM predictions, see DITTMAIER 2011, DITTMAIER 2012, and HEINEMEYER 2013A. Results for fiducial and differential cross sections are also listed below.

${{\mathit W}}{{\mathit W}^{*}}$ Final State

INSPIRE   PDGID:
S126SWW
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ 1.00 \pm0.08}$ OUR AVERAGE
$0.97$ $\pm0.09$ 1
CMS
2022
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$1.09$ ${}^{+0.18}_{-0.16}$ 2, 3
AAD
2016AN
LHC ${{\mathit p}}{{\mathit p}}$, 7, 8 TeV
$0.94$ ${}^{+0.85}_{-0.83}$ 4
AALTONEN
2013M
TEVA ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$, 1.96 TeV
• • We do not use the following data for averages, fits, limits, etc. • •
5
AAD
2023AP
ATLS ${{\mathit p}}{{\mathit p}}$, 13 TeV, cross sections
6
AAD
2023BV
ATLS ${{\mathit p}}{{\mathit p}}$, 13 TeV, cross sections
$0.95$ ${}^{+0.10}_{-0.09}$ 7, 8
TUMASYAN
2023W
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$0.92$ ${}^{+0.11}_{-0.10}$ 7, 9, 10
TUMASYAN
2023W
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$0.71$ ${}^{+0.28}_{-0.25}$ 7, 9, 11
TUMASYAN
2023W
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$2.2$ $\pm0.6$ 7, 9, 12
TUMASYAN
2023W
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$2.0$ $\pm0.7$ 7, 9, 13
TUMASYAN
2023W
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
7, 14
TUMASYAN
2023W
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$0.5$ $\pm0.4$ ${}^{+0.7}_{-0.6}$ 15
AAD
2022V
ATLS ${{\mathit p}}{{\mathit p}}$, ${{\mathit W}}{{\mathit W}^{*}}$ ($\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$) +2 ${{\mathit j}}$, 13 TeV
16
AAD
2022V
ATLS ${{\mathit p}}{{\mathit p}}$, ${{\mathit W}}{{\mathit W}^{*}}$ ($\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$) +2 ${{\mathit j}}$, 13 TeV
17
AABOUD
2019F
ATLS ${{\mathit p}}{{\mathit p}}$, 13 TeV, cross sections
$2.5$ ${}^{+0.9}_{-0.8}$ 18
AAD
2019A
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$, 13 TeV
$1.28$ ${}^{+0.17}_{-0.16}$ 19
SIRUNYAN
2019AT
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$1.28$ ${}^{+0.18}_{-0.17}$ 20
SIRUNYAN
2019AX
CMS ${{\mathit p}}{{\mathit p}}$, 13 TeV
$1.22$ ${}^{+0.23}_{-0.21}$ 3
AAD
2016AN
ATLS ${{\mathit p}}{{\mathit p}}$, 7, 8 TeV
$0.90$ ${}^{+0.23}_{-0.21}$ 3
AAD
2016AN
CMS ${{\mathit p}}{{\mathit p}}$, 7, 8 TeV
21
AAD
2016AO
ATLS ${{\mathit p}}{{\mathit p}}$, 8 TeV, cross sections
$1.18$ $\pm0.16$ ${}^{+0.17}_{-0.14}$ 22
AAD
2016K
ATLS ${{\mathit p}}{{\mathit p}}$, 7, 8 TeV
$1.09$ ${}^{+0.16}_{-0.15}$ ${}^{+0.17}_{-0.14}$ 23
AAD
2015AA
ATLS ${{\mathit p}}{{\mathit p}}$, 7, 8 TeV
$3.0$ ${}^{+1.3}_{-1.1}$ ${}^{+1.0}_{-0.7}$ 24
AAD
2015AQ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$, 7, 8 TeV
$1.16$ ${}^{+0.16}_{-0.15}$ ${}^{+0.18}_{-0.15}$ 25
AAD
2015AQ
ATLS ${{\mathit p}}{{\mathit p}}$, 7, 8 TeV
$0.72$ $\pm0.12$ $\pm0.10$ ${}^{+0.12}_{-0.10}$ 26
CHATRCHYAN
2014G
CMS ${{\mathit p}}{{\mathit p}}$, 7, 8 TeV
$0.99$ ${}^{+0.31}_{-0.28}$ 27
AAD
2013AK
ATLS ${{\mathit p}}{{\mathit p}}$, 7 and 8 TeV
$0.00$ ${}^{+1.78}_{-0.00}$ 28
AALTONEN
2013L
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$, 1.96 TeV
$1.90$ ${}^{+1.63}_{-1.52}$ 29
ABAZOV
2013L
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$, 1.96 TeV
$1.3$ $\pm0.5$ 30
AAD
2012AI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$, 7, 8 TeV
$0.5$ $\pm0.6$ 30
AAD
2012AI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$, 7 TeV
$1.9$ $\pm0.7$ 30
AAD
2012AI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$, 8 TeV
$0.60$ ${}^{+0.42}_{-0.37}$ 31
CHATRCHYAN
2012N
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$, 7, 8 TeV
1  CMS 2022 report combined results (see their Extended Data Table 2) using up to 138 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, assuming ${\mathit m}_{{{\mathit H}}}$ = 125.38 GeV. See their Fig. 2 right.
2  AAD 2016AN perform fits to the ATLAS and CMS data at $\mathit E_{{\mathrm {cm}}}$ = 7 and 8 TeV. The signal strengths for individual production processes are $0.84$ $\pm0.17$ for gluon fusion, $1.2$ $\pm0.4$ for vector boson fusion, $1.6$ ${}^{+1.2}_{-1.0}$ for ${{\mathit W}}{{\mathit H}}$ production, $5.9$ ${}^{+2.6}_{-2.2}$ for ${{\mathit Z}}{{\mathit H}}$ production, and $5.0$ ${}^{+1.8}_{-1.7}$ for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ production.
3  AAD 2016AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV.
4  AALTONEN 2013M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb${}^{-1}$ and 9.7 fb${}^{-1}$, respectively, of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
5  AAD 2023AP measure cross-sections times the ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ branching fraction in the ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$ channel using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV: $\sigma _{ggF}{\times }$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$) = $12.0$ $\pm1.4$ pb, $\sigma _{VBF}{\times }$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$) = $0.75$ ${}^{+0.19}_{-0.16}$ pb, and $\sigma _{ggF+VBF}{\times }$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$) = $12.3$ $\pm1.3$ pb. The results are given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV. Measured cross sections and ratios to the SM predictions in the reduced stage-1.2 (see their Fig. 5) simplified template cross section framework are shown in their Table VII and Fig. 15.
6  AAD 2023BV measure fiducial total and differential cross sections of VBF process at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV with 139 fb${}^{-1}$ using ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$. The measured total fiducial cross section is $1.68$ $\pm0.33$(stat)$\pm0.23$(syst) fb in their fiducial region (Table II and Section V). See their Fig. 9 for the comparison with theory predictions. The fiducial differential cross sections are shown in their Figs. 11, 12, and 13. Wilson coefficients in the Warsaw basis at 95$\%$ confidence interval are measured; see their Table V and Fig. 16.
7  TUMASYAN 2023W measure Higgs production rates with ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV with 138 fb${}^{-1}$ data. The quoted results are given for ${\mathit m}_{{{\mathit H}}}$ = 125.38 GeV.
8  The quoted global signal strength is obtained assuming the relative ratios of different Higgs production modes fixed to the SM values.
9  The 4 signal strengths for gluon-fusion (ggF), VBF, ${{\mathit W}}{{\mathit H}}$ and ${{\mathit Z}}{{\mathit H}}$ modes are fit assuming ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ and ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit H}}$ fixed to the SM values.
10  The quoted result is for ggF production mode.
11  The quoted result is for VBF production mode.
12  The quoted result is for ${{\mathit W}}{{\mathit H}}$ production mode.
13  The quoted result is for ${{\mathit Z}}{{\mathit H}}$ production mode.
14  Measured cross sections and ratios to the SM predictions in the reduced stage-1.2 (see their Fig. 17) simplified template cross section framework (6 ggF, 4 VBF, and 4 ${{\mathit V}}{{\mathit H}}$) are shown in their Table 18 and Fig. 26.
15  AAD 2022V measure the signal strength for ggF+2jets with 36.1 fb${}^{-1}$ data at 13 TeV.
16  AAD 2022V probe the Higgs couplings to longitudinally and transversely polarized ${{\mathit W}}$ and ${{\mathit Z}}$ using VBF ( ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$ plus two jets) with 36.1 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The ratios of the polarization-dependent couplings $\mathit g_{{{\mathit H}} {{\mathit V}_{{{L}}}} {{\mathit V}_{{{L}}}}}$ and $\mathit g_{{{\mathit H}} {{\mathit V}_{{{T}}}} {{\mathit V}_{{{T}}}}}$ to the Higgs-${{\mathit V}}$ coupling predicted by the SM, ${{\mathit a}_{{{L}}}}$ = $\mathit g_{{{\mathit H}} {{\mathit V}_{{{L}}}} {{\mathit V}_{{{L}}}}}/\mathit g{}^{{\mathrm {SM}}}_{ HVV}$ and ${{\mathit a}_{{{T}}}}$ = $\mathit g_{{{\mathit H}} {{\mathit V}_{{{T}}}} {{\mathit V}_{{{T}}}}}/\mathit g{}^{{\mathrm {SM}}}_{ HVV}$ are measured to be $0.91$ ${}^{+0.10}_{-0.18}{}^{+0.09}_{-0.17}$ and $1.2$ $\pm0.4$ ${}^{+0.2}_{-0.3}$, respectively, assuming the standard ${{\mathit H}}{{\mathit g}}{{\mathit g}}$ coupling. These measurements are translated into pseudo-observables of ${{\mathit \kappa}_{{{VV}}}}$ and ${{\mathit \epsilon}_{{{VV}}}}$: ${{\mathit \kappa}_{{{VV}}}}$ = $0.91$ ${}^{+0.10}_{-0.18}{}^{+0.09}_{-0.17}$ and ${{\mathit \epsilon}_{{{VV}}}}$ = $0.13$ ${}^{+0.28}_{-0.20}{}^{+0.08}_{-0.10}$, where ${{\mathit \kappa}_{{{VV}}}}$ = 1 and ${{\mathit \epsilon}_{{{VV}}}}$ = 0 for the SM. See their Tables 9 and 10.
17  AABOUD 2019F measure cross-sections times the ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ branching fraction in the ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$ channel using 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV: $\sigma _{ggF}{\times }$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$) = $11.4$ ${}^{+1.2}_{-1.1}{}^{+1.8}_{-1.7}$ pb and $\sigma _{VBF}{\times }$B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$) = $0.50$ ${}^{+0.24}_{-0.22}$ $\pm0.17$ pb.
18  AAD 2019A use 36.1 fb${}^{-1}$ data at 13 TeV. The cross section times branching fraction values are measured to be $0.67$ ${}^{+0.31}_{-0.27}{}^{+0.18}_{-0.14}$ pb for ${{\mathit W}}{{\mathit H}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ and $0.54$ ${}^{+0.31}_{-0.24}{}^{+0.15}_{-0.07}$ pb for ${{\mathit Z}}{{\mathit H}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$.
19  SIRUNYAN 2019AT perform a combine fit to 35.9 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
20  SIRUNYAN 2019AX measure the signal strengths, cross sections and so on using gluon fusion, VBF and ${{\mathit V}}{{\mathit H}}$ production processes with 35.9 fb${}^{-1}$ of data. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV. Signal strengths for each production process is found in their Fig. 9. Measured cross sections and ratios to the SM predictions in the stage-0 simplified template cross section framework are shown in their Fig. 10. ${{\mathit \kappa}_{{{F}}}}$ = $1.52$ ${}^{+0.48}_{-0.41}$ and ${{\mathit \kappa}_{{{V}}}}$ = $1.10$ $\pm0.08$ are obtained (see their Fig. 11 (right)).
21  AAD 2016AO measure fiducial total and differential cross sections of gluon fusion process at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV with 20.3 fb${}^{-1}$ using ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$. The measured fiducial total cross section is $36.0$ $\pm9.7$ fb in their fiducial region (Table 7). See their Fig. 6 for fiducial differential cross sections. The results are given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
22  AAD 2016K use up to 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.36 GeV.
23  AAD 2015AA use 4.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The signal strength for the gluon fusion and vector boson fusion mode is $1.02$ $\pm0.19$ ${}^{+0.22}_{-0.18}$ and $1.27$ ${}^{+0.44}_{-0.40}{}^{+0.30}_{-0.21}$, respectively. The quoted signal strengths are given for ${\mathit m}_{{{\mathit H}}}$ = 125.36 GeV.
24  AAD 2015AQ use 4.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.36 GeV.
25  AAD 2015AQ combine their result on ${{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit H}}$ production with the results of AAD 2015AA (gluon fusion and vector boson fusion, slightly updated). The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.36 GeV.
26  CHATRCHYAN 2014G use 4.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.4 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.6 GeV.
27  AAD 2013AK use 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 20.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.5 GeV. Superseded by AAD 2015AA.
28  AALTONEN 2013L combine all CDF results with $9.45 - 10.0$ fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
29  ABAZOV 2013L combine all D0 results with up to 9.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
30  AAD 2012AI obtain results based on 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 5.8 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strengths are given for ${\mathit m}_{{{\mathit H}}}$ = 126 GeV. See also AAD 2012DA.
31  CHATRCHYAN 2012N obtain results based on 4.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 5.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.5 GeV. See also CHATRCHYAN 2013Y.
References