CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 15 branching ratios uses 49 measurements and one constraint to determine 10 parameters. The overall fit has a $\chi {}^{2}$ = 48.9 for 40 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x2  100
 x3   100
 x4    100
 x5     100
 x6      100
 x7       100
 x9        100
 x13         100
 x15          100
   x1  x2  x3  x4  x5  x6  x7  x9  x13  x15
 
    Mode Fraction (Γi / Γ)Scale factor

Γ1 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($89.2$ $\pm0.7$) $ \times 10^{-2}$ 
Γ2 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($8.33$ $\pm0.25$) $ \times 10^{-2}$ 2.1
Γ3 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.53$ $\pm0.12$) $ \times 10^{-2}$ 1.2
Γ4 ${{\mathit \omega}{(782)}}$ $\rightarrow$ neutrals (excluding ${{\mathit \pi}^{0}}{{\mathit \gamma}}$ ) ($7$ ${}^{+7}_{-5}$) $ \times 10^{-3}$ 1.1
Γ5 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \gamma}}$ ($4.5$ $\pm0.4$) $ \times 10^{-4}$ 1.1
Γ6 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ ($7.7$ $\pm0.6$) $ \times 10^{-4}$ 
Γ7 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($1.34$ $\pm0.18$) $ \times 10^{-4}$ 1.5
Γ9 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($7.41$ $\pm0.19$) $ \times 10^{-5}$ 1.8
Γ13 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($6.7$ $\pm1.1$) $ \times 10^{-5}$ 
Γ15 ${{\mathit \omega}{(782)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($7.4$ $\pm1.8$) $ \times 10^{-5}$