CONSTRAINED FIT INFORMATION show precise values?

 An overall fit to 30 branching ratios uses 80 measurements and one constraint to determine 14 parameters. The overall fit has a $\chi {}^{2}$ = 61.8 for 67 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$x$_{i}$~$\delta$x$_{j}$> $/$ ($\mathit \delta$x$_{i}\cdot{}\delta$x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.

 x1 100 x2 100 x3 100 x6 100 x7 100 x9 100 x10 100 x12 100 x13 100 x17 100 x18 100 x19 100 x23 100 x25 100 x1 x2 x3 x6 x7 x9 x10 x12 x13 x17 x18 x19 x23 x25

 Mode Fraction (Γi / Γ) Scale factor Γ1 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ $0.491$ $\pm0.005$ 1.3 Γ2 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit K}_L^0}$ ${{\mathit K}_S^0}$ $0.339$ $\pm0.004$ 1.2 Γ3 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \rho}}{{\mathit \pi}}{+}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ $0.154$ $\pm0.004$ 1.2 Γ6 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \gamma}}$ $0.01301$ $\pm0.00025$ 1.2 Γ7 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($1.32$ $\pm0.05$) $\times 10^{-3}$ Γ9 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($2.979$ $\pm0.033$) $\times 10^{-4}$ 1.3 Γ10 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($2.85$ $\pm0.19$) $\times 10^{-4}$ Γ12 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($7.3$ $\pm1.3$) $\times 10^{-5}$ Γ13 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{0}}$ ($4.7$ $\pm0.5$) $\times 10^{-5}$ Γ17 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit f}_{{0}}{(980)}}{{\mathit \gamma}}$ ($3.22$ $\pm0.19$) $\times 10^{-4}$ 1.1 Γ18 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($1.12$ $\pm0.06$) $\times 10^{-4}$ Γ19 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.9$ ${}^{+2.8}_{-2.2}$) $\times 10^{-6}$ Γ23 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit a}_{{0}}{(980)}}{{\mathit \gamma}}$ ($7.6$ $\pm0.6$) $\times 10^{-5}$ Γ25 ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \gamma}}$ ($6.21$ $\pm0.21$) $\times 10^{-5}$